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Binary quadratic forms
and the Fourier coefficients of elliptic and
Jacobi modular forms

By Nils-Peter Skoruppa at Bonn

§ 1. Statement of results and discussion

In [S1] we described a simple arithmetical law to generate the Fourier coefficients
of all modular forms of weight 2 on I'j(m) and all Jacobi forms of weight 2 and index m.
The aim of the present article is to generalize these results to arbitrary weight k. The
final result will turn out to be a smooth and direct generalization, including the case of
weight 2 as a special case. In contrast to this the method of proof used in this article is
different and does not apply to the case of weight 2. A short overview of this method
will be given at the end of this introductory section.

To describe the main results we have to introduce some notation which will be
kept throughout this article. For numbers a, b, ¢ the symbol [a, b, c] denotes the
quadratic polynomial

[a,b,c](X)=aX?*+bX +c.

The group GL,(/R) acts on these quadratic polynomials by

[a, b, c]o (z g) X)=a@X+pB)?*+b@X+p) X+ +cyX +95)>.

Fix a positive integer m. For any pair of integers 4, r set
2,(4,r)={[ma,b,c]|a, b,ceZ b*—4mac= A4, b=r mod 2m}.
This set is obviously invariant under the action of

zZ Z

Tolm)= (mZ Z

)r\ SL,(2).

-
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For AeSL,(Z) we let 24(4, r):=2,,(4, 1) A, i.e. the set of all Q such that Qo A~ lies
in 2,,(4, r). If 4, is a fundamental discriminant which is a square modulo 4m then

Am. 4o:{[ma, b,clla,b,ceZ} — {0, +1}
denotes the generalized genus character introduced in [G-K-Z], Proposition 1, i.e.

Ao\ if 4o divides b>—4mac such that (b> —4mac)/d,
n is a square modulo 4m and ged (a, b, ¢, 44) =1,

Xm.Ao([ma, b, c]): <

0 otherwise.

Here n is any integer relative prime to 4, and represented by one of the quadratic forms
maX?>+bXY+mycY? with m=m;m,, m;, my>0. If A is a matrix in SL,(Z) and Q
a quadratic polynomial such that y,, ,, is defined for Q o A™! then we set

Xi,AQ(Q) = Aom, 40(Q © A7h.

Note that the function y,, ,, is obviously I,(m)-invariant, i.e. xp 4, =Xm 4, fOr all
A e Iy(m).

Finally, we introduce generalizations to the case of arbitrary level m of those zeta-
functions which appear in the theory of binary quadratic forms modulo SL,(Z). To

4 .
explain these let 4, r and 4, be as above and such that 4, divides 4 and 1 is a square
0
modulo 4m. Let £ € P, (@Q). We associate to these data a Dirichlet series by setting

Xm,Ao(Q) 1
Qe 2m(anirom [SL2(Z)g: Io(m),] () Fomig\22 Q(x, yy

Cm,A,r,g,An(s) =

l;'sémod I'o(m)
Q(x,y)>0

Here the first sum is over a complete set of representatives Q of 2,,(4, r) modulo I'y(m).
For each such Q we use I'y(m), for the stabilizer of Q in I',(m), and — if Q=[a, b, c]
and x, y € Z — we set

Q(x, y)=ax?>+bxy+cy*.

_ x
The inner sum is over a complete set of representatives <y> for Z* modulo the usual

action of I'y(m), on column vectors which satisfy the stated conditions, i.e. which satisfy
Q(x, y)>0 and generate the same orbit as ¢ under the usual action of I'y(m) on P, (Q).
By standard arguments from the theory of quadratic forms it is easily seen that the first
sum is finite and that the inner sums are convergent for R(s) > 1.
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We are now able to describe the arithmetical rule to generate the Fourier
coefficients of modular forms. This depends on 4 parameters (4,, ry, A, P) where 4, r,
is a pair of integers such that A,=r3 mod4m and 4, is a fundamental discriminant,
where A € SL,(Z), and where P=P(a, b, ¢) is a homogeneous polynomial in three
variables with complex coefficients — say of degree k—1 —. To each such quadrupel
(4o, 19, A, P) we shall associate a sequence 6, 4, ., 4,p(4,7) which is indexed by pairs
of integers 4, r with 4=r?’mod4m, 4,4 > 0.

Namely, let P, = P, (b, c¢) denote a polynomial in b, ¢ such that

P,(b, c+1)— P, (b, c)=P(0, b, c).

Note that such a polynomial exists: indeed, it can be obtained by replacing each power

B
" 'in P(0, b, c) by "(C—), where B,(c) is the n-th Bernoulli polynomial, i.e. that
n

polynomial which is uniquely determined by the properties B,(c+1)— B,(c)=nc" !
1
and | B,(c)dc=0 for n>1, By(c)=1. Moreover, any two such polynomials differ by a

0
polynomial in b. We make the specific choice

s b oP
P,(b, c):= <Ob ;ic)>+£(b—t)5a-(0,t,0)dt,

where the first term on the right denotes the polynomial just described. Similarly, we let

By :1(a)

P,(a, b)==P< ) , b, 0>+§(b—t) (0, t, 0)dt,

where the first term on the right is the polynomial obtained by replacing each power
a" ' in P(a, b, 0) by "( ) . Let N:=m|4,|. Using P;, P,, N we define a function P(Q)

by setting for any Q = [a, b, c] with integral coefficients
sign(a) P(a, b, c) if ac<0,

b
Nk-1P1<— i) if a=0,0<c<N,

if ¢=0,0<a<N,

otherwise




Skoruppa, Binary quadratic forms and Jacobi modular forms 69

(sign(a) = a/|a| for any non-zero real a). Finally, we set

(1 (gm,do,rg,A,P(A’ r):= Z Xﬁ,AO(Q) ﬁ(Q)

Qe 24 (d04,ror)

if k=1, and if k=22, we define 4, 4,,, 4,p(4, r) to be the right hand side of (1) plus a
correction term which is given by

VP(L Oa 0) [Cm,AOA,ror,AO,Ag(k) + (“ l)k Sign (AO) Cm,AoA,ror, _AO,AQ(k)]’

2 :
_YP(Oa Oa 1) [Z:m,AoA,rOr.Aoo,Ao(k) + (—‘ I)k Slgn (AO) Cm,AoA,ror,~Aoo,Ao(k)]5

where

(=D k=12 .
Y=ok k=1 o4

(¢(s) = Riemann zeta-function).

Note that the sum in (1) is finite. In fact, if P(Q)+0 — say Q =[a, b, c] — then
a, b, ¢ satisfies a=0,0<c<N or ¢c=0, 0=<a<N or ac<0. But obviously there are only
finitely many integral (a, b, ¢) satisfying one of these equations and the equation
b*—4ac=A4,4. Also note that there is a contribution to the sum (1) from terms with
a=0 or ¢=0 only if 4,4 is a perfect square. If the latter is the case then the

B B .
contribution coming from P (0, b, —*#) and P( *H(a), b, 0> may be viewed as a
*

*x+ 1
natural value assigned to the (divergent) sums

1 1
3 2. Xm,4,(Q) sign () P(0, b, c), 5 Y. Xm.4,(Q) sign(a) P(a, b, 0),

taken over all Q =[a, b, c] € 24(4¢4, ror) such that a=0 and ¢=0, respectively. Indeed,
replace e.g. in the first of these sums each power ¢"~! by ¢" !|c|™°, note that the
resulting expression can be analytically continued to the complex plane (since it can be
written as a linear combination of Hurwitz zeta-functions), and compute its value at
s =0. The latter is easily done using the formula

1 i nl B

Iy 51gn(c)sc at s=0 =— n(X)

2 cex+Z |C| n
c*0

(valid for any positive integer n and any real x with 0=<x <1, except for n=1, x=0
where the left hand side of this identity is obviously 0). The equation (1) could therefore
be written symbolically as

G sorna (B )= Y Am4,(Q)sign(Q) P(Q)+ {

certain }
b
Qe 2 (do4,ror)

correction

41 Journal fiir Mathematik. Band 411
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where, for any Q =[a, b, c], we use

sign (Q) ==% (sign(a) —sign(c)),

(with sign of the real number 0:=0), and P(Q)=P(a, b, ¢). The “certain correction” is
given by (2) and a contribution due to the integrals in the definition of P, and P,.
Finally, this shows — as the reader can also verify more directly — that in the
definition of P we could choose for N any positive integer such that the value 7 4 (Q)
and the condition “Q € 24(4, 4, ror)” for any Q of the form [0, b, c] or [a, b, 0] depend
only on ¢ resp. a modulo N: another choice would of course affect the definition of P
but not the value of the sum (1).

The numbers %, 4., 4,p(4,7) tepresent the arithmetical rule to generate the
Fourier coefficients of any elliptic modular form. To state this precisely let M5’ (m),
for positive integers k, m denote that certain space of elliptic cusp forms f of weight 2k
on I'y(m) which was introduced in [S-Z]. By definition it is the space of modular forms
spanned by all cusp forms f of weight 2k on I'j(m) such that the standard L-series
L(f,s)=Y a()I™* of f(x)=Y. a(l)e*™"'" is of the form

121

L(f9=(]] 2, L(g. 9

Pl
for some m’|m, some new-form g on I'y(m’), and with polynomials Q,(s) in p~* satisfying

-5—(2k~s)

P 0,60=p""""0,2k—s)

cusp

for all p' Ni Thus, M3, " (m) contains all new-forms of level m and a certain choice
m

from each old-class. We then have

Theorem 1. Let k,m be positive integers, k=2. For any A€ SL,(Z), for any
homogeneous polynomial P(a, b, c) of degree k — 1, satisfying

0? J 0
(:a“b?‘:az a)”—"’

and for any two pairs A;,r; (i=0, 1) such that A;=r? mod4m, 4,4,>0 and the A; are
fundamental discriminants, define a function of one variable T € C, 3(t)>0 by setting

3 (4 I .
on,royAhr;,A,P(T)== Z {Z ak~? (_‘_1_1.> (gm,do,ro,A,P <A1 ;2_’ r _‘;)} e27tllt'

=1 (ajl .
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cusp

Then these functions are elements of IM5,’* (m). Vice versa, any cusp form in M5 (m) can
be written as a linear combination of these functions fy . 4. ., 4.p-

Actually we shall prove more and Theorem 1 will be obtained as a Corollary of
this more general result. To explain this let S, , and S, denote the spaces of
holomorphic and skew-holomorphic Jacobi cusp forms of weight k and index m,
respectively (we shall review the definition of these spaces in §2). The main theorem of
this paper will be

Theorem 2. Let k,m be positive integers, k=2. Then for any A € SL,(Z), any
homogeneous polynomial P(a, b, c) of degree k — 1, satisfying

02 0 0
<aﬁ‘5anP=Q

and for any pair of integers Ay, o such that Ag=r3mod4m and A, is a fundamental
discriminant the function

2ni(%:~néu iZ’L—Aliu+rz)
¢A0,r0,A,P(Ta z):= Z (gm,ao,rO,A,p(A, rje
A, reZ
A=r2mod4m
Ap4>0

(t=u+iv, z€ C, v>0) defines an element of Sy, ,, where e=sign(4,). Moreover, any
Jacobi form in Sy, and S/, , is obtained as a linear combination of these functions
¢A0,r0,A,P'

We remark that Theorem 1 and Theorem 2 remain literally true for k=1 if one
modifies the functions f , 4, ,.4p and ¢, . 4 p by adding a suitable Eisenstein series
of weight 2 and level or index m minus its constant term (cf. [S1]). This remark is
closely related to the following one. In the case m=1 and 4,<0 the correction terms (2)
of the Fourier coefficients of the series ¢, , 4 can be interpreted as a contribution
coming from Jacobi-Eisenstein series. In fact, for m=1 the series (. 44,rr,. ¢, 40(5)
coincide with the well-known zeta-functions appearing in the theory of binary quadratic
forms. In particular one has the well-known formula

CL dod,r, & 4o ()= LAO(S) L,(s),

where L,(s), for any 4=4, f? A, fundamental, fe Z, f>0, denotes the standard

Dirichlet series
> (A _, AN\ s (e
LA(s)==<Z (—l‘—>l ) IC)) (#)d el ™2
=1 de|f

(cf. [Z1], Proposition 3). Using the functional equation of the L, (s) the correction term
(2) can then be written in a more pleasant form as

Ly(1=K) Ly(1=K)
{(1-2k)

-(P(1,0, 0)— P(0, 0, 1)).
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From this, we recognize first of all that it is an effectively computable rational number.
Moreover, L,(1—k) is just the A-th Fourier coefficient of the Jacob-Eisenstein series of
weight k+1 and index m=1 (cf. [E-Z], Theorem 2.1). A similar reasoning should be
possible for arbitrary m. However, we shall not pursue this question any further in this
article.

We end this section by some remarks concerning the method to derive the stated
theorems, their connection to published results and the organization of this article.
Theorem 2 was proved for the case of weight k+1=2 in [S1]. The basic idea for the
proof of the general case remains in essence the same and relies on the diagrams

Sev1m —2270 S, (Fo(m)) —— HY, (Fo(m), C[X12e-2)

and the corresponding diagrams with “—” replaced by “+”. Here the %, , are certain
lifting maps to S,.(I(m)) (= space of cusp forms of weight 2k on I'j(m)) which were
studied in [S-Z]. They are indexed by pairs of integers A,,r, with 4,=r3 mod4m,
4, <0 and fundamental. The symbol H,,. (I',(m), C[X],,-,) denotes the first “cuspidal”
cohomology group of I'y(m) acting in the natural way on the space C[X],,_, of
complex polynomials of degree <2k —2. The outer automorphism

a« p « —pB
g
y 0 -y 0
of I'y(m) induces an involution on this cohomology group and the “—"-sign denotes the

“—(—1)¥"-eigenspace of this involution. Finally ¢~ is that isomorphism which is induced
by the Eichler-Shimura isomorphism. Let

Hiory € H;ar.(FO(m)’ ClX1x-2) ® Sikvi,m

denote the kernel function of ¢~ o %, , (with respect to the natural Petersson scalar
product on S, ,). If 4 is a linear functional on the first factor of the above tensor
product then (A® 1) (#,, ) is an element of S, ,. By results of [S-Z] the intersection
of all kernels of the &, , is void, and since ¢~ is injective (actually, it is an
isomorphism) the intersection of all the kernels of the ¢~ o % , is void too. From the
latter it is easily deduced that the (A® 1) (#,,,) span the whole space Sy, .. The
miracle is that the Fourier coefficients of the #, , (and the corresponding ., , ) can
be explicitely computed and are given by a finite and effective formula; suitable choices
of the functionals A produce exactly the forms ¢, , . p introduced in Theorem 2, and
mapping these forms to S,,(I'o(m)) via the maps %, , produces the forms f, , 4 .. 4.p
appearing in Theorem 1.

In order to compute the Fourier development of #, , one will first of all try to
replace the above first cohomology group and the Fichler-Shimura isomorphism by a
more handy space and map. In the case of level m=1, i.e. the SL,(Z)-case, these more
handy items are found by replacing the first cohomology by the space of period
polynomials, a certain subspace of the space C[X],;-,, which was explicitly determined
in [K-Z]. Now this procedure can be generalized to arbitrary m and it turns out that
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the above cohomology group attached to a given k, m has to be replaced by a certain
subspace of C[X]5:%"4). This generalization seems to be well-known in a more or less
precise formulation but the author could not find any reference in the literature
(although it was communicated to the author that there should be an article on this by
Henri Cohen which disappeared in some proceedings volume). Also, this subspace and
the correspondingly modified Eichler-Shimura isomorphism will be studied in a forth-
coming paper by J. Antoniadis [A]. We shall give a precise statement (including proofs)
of the very basic items of this theory (as far as we need them in this article) in § 3. Now,
replacing the above first cohomology by the space of period polynomials, we may view
the kernel functions #,., as elements of C[X15:“"" ® Si+ym- We shall compute
these kernel functions in § 4.

For the computation of J{ﬁ,o we start with a kernel function for &, , . The
choice of this kernel function is the main difference to the quoted article [S1]. Here we
shall use a holomorphic kernel function as it was defined and studied in [G-K-Z]
whereas in [S1] we used a non-holomorphic theta function as kernel. In principle it
should be possible to use such theta kernels in the general case too, and to compute
directly the period polynomials associated to these kernels, considered, with fixed first
argument, as (non-holomorphic) modular forms. This was the procedure in [S1] and it
yielded period polynomials, the coefficients of which have been holomorphic or skew-
holomorphic Jacobi forms and which are essentially identical with the ¢, , 4 p
appearing in Theorem 2. However, for weight k + 1= 3 these coefficients are no longer
holomorphic or skew-holomorphic, and thus one would have to append a holomorphic
or skew-holomorphic projection. This all together would give a proof from scratch of
the above theorems but the computation of the Jf;i,o seems to become somewhat
lengthy in such a setting. On the other hand the disadvantage of using the holomorphic
kernel function is that it works only for the case of weight k+1=3. This is due to
certain problems of convergence which could probably be circumvented (using the so
called Hecke trick), but the treatment of this would spoil the whole presentation. Thus,
in this paper we shall only deal with the case of weight = 3; for the case of weight 2 the
reader is referred to [S1].

The computation of the Fourier development of the ij,i,o in §4 is very closely
related to similar computations in [K-Z]. In fact, the Fourier coefficients of the
holomorphic kernel function of %, , , considered as a Jacobi form, are certain modular
forms which, in the case of level m =1, are simply linear combinations of the functions

QoA ()"

AeSL2(Z)g\SL2(2)

where Q(t) is a quadratic polynomial with positive discriminant. These functions were
introduced in [Z2] in connection with the Doi-Naganuma lifting. Its periods have been
calculated in [K-Z], Theorem 5. This Theorem, in essence, is a special case (m=4,=1)
of the Proposition 4 below. The calculations in [K-Z] which led to Theorem 5 loc.cit.
can essentially be carried over to our situation, and we shall precisely do so. This
computation is based on three key lemmas which are stated and proved in the
Appendix A and B.

42 Journal fiir Mathematik. Band 411
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With respect to the “+”-case there are some remarks indispensable. The proof is
completely identical with the proof of the “—”-case. Nevertheless, at the first glance
there are two obstructions: First of all the maps %, , (4,>0) on Si+1.m are not yet
defined in the literature. Secondly, the fact that the intersection of their kernels is void
seems to depend on a trace formula, and the corresponding computations (which will
be given in [S2]) have not yet been published. Both problems can be solved by literally
copying the corresponding facts and proofs in the “—”-case. The first problem will be
solved in precisely this manner in § 2, for the second one the reader is referred to the
quoted paper. Thus, since this paper is not yet available, a suspicious reader might wish
a modified formulation of the Theorems 1 and 2 with respect to the “+”-case; the
correct and honest formulation can be found in §5 where we shall summarize and
append some formal considerations to complete the proof of the two claimed theorems.

§ 2. The lifting maps from Jacobi forms to modular forms

As in the foregoing section let S, ,, and S;’,, denote the spaces of holomorphic and
skew-holomorphic Jacobi cusp forms, respectively. Thus, S; ,,, for positive integers k, m
and ¢=+1, is by definition the space of smooth and periodic functions ¢(z, z) with
T €, the set of complex numbers with positive imaginary part, and z e C, which
satisfy the following two properties:

(i) The Fourier expansion of ¢(z, z) is of the form

¢(T, Z) = z C¢(Aa r) eA,r(T’ Z),
A,reZ,ed>0
A=r2mod4m

where the coefficients C,(4, r) depend on r only modulo 4m. Here

(ijAu r2+4| . )

2 +
ey ()= L Am A T (r— i),

(i) One has

. z2 k 1 _
¢<_——_1’§> e-—21um—r~—=¢(‘[’ z){ T if ¢ 1,

T ™ if e=+1.
Let #(Z)=SL,(Z)x Z? where the semi direct product has to be taken with

respect to the natural (right-) action of SL,(Z) on Z?2, the column vectors with integral
entries. The group #(Z) acts on H x C by

. _(ot+B z+At+p ((* B
Y(T’Z)—<vr+5’ yT+6 ) <Y—<<v 5>’A’”>>

and for any given pair of integers k, m on functions ¢(z, z) by

T+ |+,

-

at+p z+At+ ,u) e—2nim(w+lzr+2).z)

(d)lk,mn(‘ra Z)=¢<’}J‘C+6, yr+5 yt+d
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and similarly by a slash operator “|,,.”, which is defined by the same formula as “|;,”
but with (y7+ ) 7% |(yt + )| ! replaced by (yt + ).

It is easily verified that any element of ¢ € S; , satisfies ¢f; ,Y=¢ for all

Ye #(Z), and that for any two functions ¢, p € S; ,, the function

bt ) p(E De IO J(ap

is invariant under (z, z) — Y- (z, z) for all Ye #(Z). The Petersson scalar product of ¢, v
is defined by

Glpd= | @2k e SO IJ@kdV.

F@NS*C

Here dV is the .# (Z)-invariant volume element on $ X Z, i.e.

dudvdxd
dV(r,z)z—u——l:Pi—X (t=u+iv, z=x+1y),

and the integral has to be taken over any (measurable) fundamental domain of H$x C
modulo .#(Z). As fundamental domain one can take e.g.

1 1
(@t + 2zl —3<SREOS5,0Sh ue R A+ps1).

The above integral is absolutely convergent since, for any cusp form ¢, the function

k
2

Cem?t
lp(z, 2)le ~""30 J(r)

is exponentially decreasing as J(z) tends to infinity, as it is immediate from the Fourier
development of ¢. Thus, {(¢|p) defines a non-degenerate scalar product on S ,,.

Fix a pair of positive integers k, m. Let A, ro€ Z, 4o=rimod4m, 4, funda-
mental; let ¢ =sign(4,). For any ¢ € S ,, we set

0 2
Grora® 0= % (a2 (%) ¢, (10 5. )) e

1=1 \a|l a

and

®  Q.nd= Y <|AOA|"‘% 5 MPLQ—1>eA,,(r,z)

k=1
A,reZ, 4g4>0 0ea, Goaron (1)
A=r2mod4m
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(r,t€ 9, ze C). For e=+1 and an integer k let S;(I'y(m)) denote the subspace of cusp
-1 k
forms f of weight k on I,(m) satisfying f (;n—;)=(— 1)2 s(]/r;'c)" f(), i.e. the space

of cusp forms f of weight k on I'y(m) such that

L*(f, 5)=(2n)"*m2 I (s) L(f, s) = e L*(f, k—s).

Proposition 1. Assume k=3. The series (3) is normally convergent on HxHx C.
For fixed t it defines an element of S; ,, and for fixed 7,z it defines an element of
2k—2(Lo(m)), where ¢ =sign(4,). For any ¢ € S; ,, one has

Saore® = DIk, m g, r(— 15 )

7 k—2

260\ 72 )/—¢ (2k—4\7!
Here c,‘i,,,,:(——mﬂ> J( > (/ —1:=i) is a constant depending only on k, m

and ¢.

Remark. Note that the Proposition implies in particular that %, , maps S,
into S5, _,(Io(m)). This was proved for the “—”-case in [S-Z] and for the “+”-case and
k=2 in [S1]. The kernel function @, , was introduced in [G-K-Z], and the above
Proposition was proved loc.cit. (“Theorem” in II. 3) for the “—"-case.

33

The proof of the above Proposition for the “—”-case extends almost without
change to the “+”-case. The only new ingredient which has to be inserted is the skew-
holomorphic Poincaré series.

Proposition 2. Let k>3. Let Ay, 1o € Z, Ag=r3 mod4m, 4, 0. Set

&
PAo,ro:= Z er,rolk,m Y;
Ye $(2)w\F (Z)

(1) f),O, Z), and where the sum is over a

complete set of representatives for F(Z) modulo $(Z),. Then this sum is well-defined
(i.e. does not depend on the choice of the representatives Y) and normally convergent on
9 x C, and it defines an element of S; ,,. For any ¢ € S;, ,, one has

where e=sign(4,), where F(Z),= <<

Cq)(AOa o)
3 b

k—=

140" 2

<¢|PA0,"0> = dk,m
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3
k—ZI-v k—=

where d, =3 Moreover, P, , has the Fourier expansion
2n 2
k
(4) PAo,ro = z (eAO,r —e(—1) ey, )

reZ
r=romod4m

+ Z gAO-"o(A’ r) (CA‘r-—S(—-l)k eA,—r),
A,reZ,40e>0
A=r2mod4m

where
k_3
2 [(A\2Td & T/ 4,4
,A,r=—"‘|/— —|— H,(4,,1ry; 4,1)J Vo),
840, o( )=(—z¢i) 87{1/;(4%) ygl ,(dos 1o r) k_g( my
(/2)k+2n—% 3
&, Z
Here Jk‘;(z)z Y (—=1)" —————— is the Bessel function of order k—=, we use
2 n=0 n!F<k+n——§>

1/——1=i, and

3 rot2mA)2—A9 p2-4 (ro+2mayr
-3 2mi(FOS L Sl T 5 0 SR
H},(AO,VO;A,F)Z')) 2 Z e ( 4my 4my 2my )
A,a,0 mod y
ad=1mody

Remark. For the “—"-case the above Proposition was proved in [G-K-Z]
(Proposition in II. 2).

Proof. We show that the arguments given in [G-K-Z] for the “—"-case remain
valid in the “+”-case by shortly reviewing the computation given loc.cit. and thereby
including the case of positive discriminants. The arguments for normally convergence,
well-definedness and correct invariance under #(Z) are literally the same as loc.cit..
Thus, in view of the asserted Fourier development, which we shall deduce below, it is in
fact an element of Sy ,,.

The scalar product {¢|P,,, > equals by the usual argument of “unfolding the
integral”
_— —4nmﬁ
_[ ¢(T7 Z) eAO,ro(Tﬂ Z) € ’
F D)\ HXC

vkdV,

where as always t=u+iv, z=x+iy. Inserting the Fourier development of ¢ and
choosing [0, 1] x R, x [0, 1] xR as a fundamental domain for $ x C modulo #(2),
one thus finds

2

1 © 1 + 0 _ .
Y Cy(d,r) [du [dofdx [ dye,,(t,2)e,,, (1. 2)e I gk
A.r 0 0 0 —@©

43 Journal fiir Mathematik. Band 411
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Integrating with respect to u and x yields 0, unless (4, r)=(4,, ro). Thus the scalar
product in question equals

3
2 k=2rlk—=
xQ +© -n r0+|Aolv+4ro +4-mﬁ " < 2)
Cyldo,ro) [ dv | vF=3e " ) 2yl o) ———— L
0 — 00

3 b
2n

k=3
as claimed.

To compute the Fourier development we choose as representatives Y the elements
(1, 4,0)- (4,5, 0) (U, 0), where A runs through Z, where U € {+ unit matrix}, where (y, 0)
runs through all coprime pairs of integers with y=1 or (y, 8) =(0, 1), and where for each
such pair A4, ; denotes an element of SL,(Z) with second row equal to y, 5. We then
obtain

PAo,ro(T’ Z)= SO(T’ Z) + i (S),(‘E, Z)‘“‘B("‘I)k S},(‘C, '_Z))’

y=1

where

z 2mim( 25 4 2 Act 202
S,(t2)= Y {yt+0}es,, (4T +AAt emm(“‘”er " ”*").
A0eZ yT+90
@,y)=1

Here A=A, ;, and for any complex number w we use {w}=w"* if 4,<0, and
{w}=w'"¥w|™! if 49>0. Now S, is just the first sum of the right hand side of (4).
at+f «a N -1

Y146y pyTr+d

To compute S, for y =1 we rewrite it, using At = X as

S,(t,2)= X {)"E+5}eAO,m(%,,{%)ez’””‘pV

AdeZ
4.,) 1

A

z— - (—v z—%f)

e —1 ')’ elnim —%Ts“"— .
40T\ y(y1+0) T+ 0

This in turn can be rewritten as

. (r0+2m).)2—Aoa 5 J)
) sea= Yy 0 m )v‘*Fv<r+~,z—-),
A,a,6mod y Y b

ad=1mody

=1 z4t \ 2mm(TEE
F (1, 2z)= +s} e, , , e s
A= 2 {r+s) "°’°(v2(r+S) v(r+s)>
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But F,(z, z) is periodic; thus we have

Fyz Z CA,reA,n

A,reZ
A=r2mod2m

—1 nim =z
Cpp= | dv | dz{} eAO,,()( Z)ez (< )eA.,(r, z)~L

2.0 .
3I(1)=C1(>0) 3(z)=C; YTyt

Note that the Fourier coefficients c,, are a priori functions of the imaginary parts of
the arguments of F,, so that one would have to fix such arguments and to choose
C,, C, equal to their imaginary parts. However, as the following computation will show,
the above double integral does not depend on C,(>0), C,, so that we allow ourself the
above notational shortcut. Now the inner integral equals

1 2

.(ToZ _mz2 s o r2 ror
- M= _ T 2 — +

-‘. ean(yr T rz)dz._.<__> e2m(4myr 4mr 2my .

3(2)=C> 2im

Here, for any complex numbers w, r, we use w":=¢e'" (—n<0:=Arg(w) < +n). Inserting
the last formula in the double integral we find

2”(_2{%) + o 1 i

. v ——(:‘_1401 +A(u+o‘ic1))
CA,r=*V—§——7— | (w4icy)? "ermlutia du
mi - ©
for negative 4, and
2mi(-22L .

o = ( 2"‘)‘) +j‘oo (e ic )%_ e%(Jﬁ?l]A»A(u—aicﬂ)du

Y 2mi e !
for positive 4,. Here 0 =1 if 4, and 4 have the same sign, and ¢ = —1 otherwise. Note

that the second integral is the complex conjugate of the first but with A replaced
by —A. Thus it suffices to evaluate the first one. It vanishes if 4, and 4 have opposite
signs since we then can shift the path of integration to ico. If 4, and 4 have the same

. . l /| 4 .
sign substitute 1 =i Z—Z w. Then the first integral becomes
Y

3k crim 4 1
4 2 15100 wz—kea(-w‘+w)dw’

c1—ioo

__i%-k Ao
y*4

|/404 . .
where g=u—. But the integral here equals ZniJk 3(0). Inserting this in the
vm 2

formula for ¢,,, and then inserting the resulting Fourier expansion of F, into the
formula (5) for S,, we finally find that the 4, r-th Fourier coefficient of S, equals
—(—1ke 840,r,(4, —1). From this we find the asserted Fourier expansion of Py ,,. This
concludes the proof of the Proposition.
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Proof of Proposition 1. The convergence properties and the modular behaviour of
: . . -1
Q4,,r,(t; 7, 2) as function of ¢ are proved as in [G-K-Z] (for the behaviour under ¢+ oy

apply loc.cit., I. Proposition 1 (P2)). For the remaining assertions it is obviously enough
to prove the identity

Ms

(6)

1 a

]

k-3
Ao\ 140 2 .
k-2 =0 Y 2milt _ ¢ .
1 (azll ¢ ( ) di,m PAO%Joé(T’ 2))e S Lao.roE3 T 2)-

But this can be checked as in [G-K-Z] by just comparing the Fourier coefficients (in the
Fourier development with respect to t, z, t) on both sides. The Fourier development of
the left hand side is immediately obtained by inserting the developments of the P, ,,
computed in Proposition 2. The Fourier development of the right hand side is obtained
by inserting the Fourier developments of the

Xm,Ao(Q)

P
0e 2, dodrory 2(1) !

These latter Fourier developments have been computed in [K-Z], II. 1, Proposition 1,
for positive and negative A, (however, there is a tiny mistake in the formula given
loc.cit.: the term ey(m, 4, g, Dy) on p. 517, second line from the bottom, has to be
multiplied by the factor (—sign Dy)*). Finally, in that paper the Fourier coefficients of
both sides of (6) have been compared in the case of negative 4, and this comparison
can literally be copied for the case of positive 4,. This completes the proof of
Proposition 1.

§ 3. A variation of the Eichler-Shimura isomorphism

Let f be a cusp form of weight k on I'y(m), and 4 € SL,(Z). We define a complex
polynomial in the indeterminate X by setting

Gea() =1 (Fled) (©) (X —0)~2dt.
0

Here the integral has to be taken along the line t=in (0<#), and for any function f,

defined on the upper half plane, any 4= (: g e SL,([R), and any integer k we use
(A ©=f (22E) v oyt
, I \yt40 y g




Skoruppa, Binary quadratic forms and Jacobi modular forms 81

Since f is a cusp form f|, A(t) is exponentially decreasing for t — 0, ico and any 4, and
hence the above integral is absolutely convergent. Note also that g, ,(f) depends only

on the left coset of A4 in I',(m)\SL,(Z). Let g:= <_ , thus,

1
0 1

o B\ (o —B
g(v 5>g_<—v 5)'
For ¢ € {+1} we set

0, 4(f)= Qk,A(f)+(_1)k/2 €0k, gag (218

ie.

D ehalN=] ([hA) O X —0F2 + (=12 e(fl,gAg) (1) (X + 1) ~2) d.

0

Identifying I'y(m)\SL,(Z) with [P,(Z/mZ) via I'y(m) (: ;) > (y mod m: 6 modm) we
may view
oc(f)= {Qli,A(f)}Aero(m)\SLz(Z)

as an element of C[X];4"™®, where C[X],-, is the space of complex polynomials in

X of degree less or equal to k —2. The correspondences f + g;(f) thus define maps
0 Si(Fo(m) — CIXT5™,
respectively.

Proposition 3. For each integer k the maps ¢ and g, are injective.

Proof. Let oe{+1}, fe S(I,(m) and 4 € SL,(Z). For t=in one has t=—t
and gAgt= — At, and thus

(FleA() (X =0} + 0 fl g Ag(t) (X + 1) ?)dt

=f(At) (yt+6)7* (X =ty 2dt— o f(—At) (yt+ ) (X — )2 dt.
Therefore, decomposing

f=f++if—’

1 1 —

@) =5 FO+TED), [-0=5, (70D,
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we have

(FleA®) (X — 1) "2 = fl, gAg(t) (X + 1))t
= 2R L AQ) (X — 1) 2d0) + 2iR(f_[AQ) (X —1)*"2d1),

and the same for ¢ = +1 but with R replaced by i 3.

Thus, to show that g and g, are injective it obviously suffices to show that for
any f € S,(I',(m)) the equations

(8) T R(fLA@R) (X —t)"2dt)=0 (4 eSL,(2))

0

imply f=0. But the latter statement is easily reduced via the Manin trick to the fact
that the usual period mapping of the Eichler-Shimura isomorphism is injective. Namely,
let BeIy(m) and t,€ . Write B=+T"ST"S-.-T™S with nje Z and T, S denoting

11 0 —1
the generators ( 0 1), ( {0 > of SL, (Z) respectively, and set

Bj:=+ T"ST"S .- T"S, By:=1.

Then
Bto Bitg Bato B,to
[ RO (X~t)"'2dt)=< [+ +.+ ) R(f(t) (X —t)~2dt),
to to Bito B,-1to
and
Bj]xto m(f(t) (X— t)k—z dt) _ T J‘}lsm m(f(Bjt) (X B Bjt)k—z dBjt)
Bjto to

_ T f}nsto i}{(f]kBj(t) (Bj_IX_ t)e2 dt) (y; X+ 5,')’(—2 (B;l = <: ;)) .

1 . .
Note that one has T™*!St,= —t—+nj+1. Thus, setting t,=in and letting # tend to 0,
(]

it follows
Bfo R(S(@) (X——t)"“zdt)=ri1 T R(f1B;(t) (B ' X — 1) 2dt) (y; X + 6,)* 2,
0 j=0 0

where the first integral has to be taken along the semicircle in $ joining 0 and BO.
Hence (8) implies

BO
[ R() (X —t)2dt)=0.

0

That this equation is true for any B e I',(m) means that f is in the kernel of the Eichler-
Shimura isomorphism, i.e. f=0 ([Sh], Theorem 8. 4), and this was to be shown.
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§ 4. The map from Jacobi forms into the space of period polynomials

The aim of this section is to compute the kernel function of the composed maps
) 05k ° Lhour * Siar.m— CLXIRED (e =sign(4,)).

We shall assume throughout this section that k=2 since various expressions occuring
in the following would not converge for smaller k. For k=1 and 4,=1 the composed
map (9) is not even a priori well defined since in this case certain Jacobi cusp forms map
to Eisenstein series and the integral (7) defining the period map will not in general
converge for non cusp forms. However, as was shown in [S1], the integral (7) does in
fact converge absolutely for those modular forms of weight 2 occuring as images of
Jacobi cusp forms under all the lifting maps ¥, ,. Hence we could speak of a
composed map even in that quoted special case. The result of this section is as follows.

Proposition 4. Let k, m be positive integers, k=2. For A e SL,(Z) and integers
Ao, ro, A, 1 such that Ay=rimoddm, A=r>mod4m, A4,4>0 and A, is fundamental,
define

Caooro(4, 75 X) = ) Xm, 4,(Q) sign (@) Q(X)* !
Qe 9 (404,rgr)
Q=[a,b,cl,ac<0

Nk-1 bX+c
+ Z Xﬁ,Ao(Q) k Bk< N
Q=[0,b,cle 2{4(do4,ror)
0Zc<N
k-1
- X 7A@ B, (““’/X >X2H
Q=[a,b,8]<e.?$)\(JAoA,ror) N

+ 7 [m, 404,ror, 40, 40(K) +(— 1 €L pn, 4 4,rr, 40, 40 (K)] Xx2k2

-7 [Cm,AoA,rOr,Aoo,Ao(k) + (— l)k BCm,AOA,rOr, —Aoo,Ao(k)]'

Here ¢=sign(4,), and N is any positive integer such that for any Q=[a, b,0] or
Q=[0, b, c] the value of x2 4,(Q) and the condition “Q € 24(444, ror)” depend only on
a, ¢ modulo N. Moreover, B,(X) is the k-th Bernoulli polynomial, and

_1
k=3

(=D (k=12
AT T

Set

A A . 2"i(rft:nd“ rzi—'lldl
’%o,ro(T, z, X)= bk,m Z (gAU,rO(Aa r, X)e

A4,reZ,404>0
A=r2mod4m

v+rz)
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2 [2e\1

(t,te®, ze C), where bk,m=7 <;5> (/—1=i). Then this defines the kernel
€

function for the composed map 05 4° ¥,

to,ro- More precisely, ZQ{;,,O is an element of
Sk+1.m» and for any ¢ € Sy, 1 ,, one has

$D1Zi5,r, (5 — X)) = (0544 Laouro D) (X).

Remark. 1. In the statement of the proposition we are tacitly identifying
polynomials and polynomial functions, i.e. for fixed 7,z we view %, (r,z; X) as a
function in the complex variable X rather than as a polynomial in the indeterminate X.

2. Note that the statement of the proposition implies that the coefficients
%1.0,(4, r; X) do not depend on the special choice of N. However, this follows also
from the well-known equations

n—1 X
pty Bk( :v>=Bk(X) (neZ n>0).
v=0

Proof. Using the kernel function for %, , given in Proposition 1 (but with k
replaced by k + 1) we can write the polynomial g, 4 %, ., ¢ as

ico

y2
= —4nm
[ 002 Grrm@ur AT, 2) (X —1)*72e ™" T+ 14V dr,
0 F\(H*CD)

It is easily checked that we can interchange the order of integration, and from this we
recognize that the Jacobi form

- QZk,A(Clsc%-l,mQAo,rO('; T, Z)) (_X)

is the kernel function of the map g, 4° %, ,, (To conclude this one also needs that
—t=t for t € iR.). Inserting here the Fourier expansion (3) of Q, , and interchanging
summation (over 4, r) and integration we find for C(4, r; — X), the 4, r-th coefficient of
the kernel function for @3 4 ° %, ,,, the formula

. — .t k—% e w
ClA.ri X)=~clrimldod] * | (Q‘Ez @ (g Ay o

1y M)d
HEUe L 1@ g g ag )

Here 2=2,,(4,4, ror). As a first simplification of this formula we note that the set 2

is invariant under Q+— —Qog, i.e. under [a, b, c] — [—a, b, —c]. Hence we can re-
place Q by —Q o g in the second sum. It is easily verified that

Xm, 40(—Q © 8) =8180(40) Xm, 4,(Q), —(QoggAdg) (t)=—(Q°A)(—1).
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Thus the second sum equals (—1)*¢ times the first but with ¢ replaced by —¢, i.e. with ¢
replaced by ¢ (since t € i [R). Hence, after substituting ¢ +— £ in the integral of the second
sum we can write

k"l i X—t 2k
C(A’ r) = _ci-#—l,mlAOAl 2 j Z Xﬁ.AO(Q) (_*+ dt.
—ioo Qel2°A4 Q(t)

Note that, though we have studied the infinite sum occuring here only for t € §, it is
normally convergent in the lower half plane J(t)<0 as well, and along the imaginary
axis the function defined by it can even be continuously continued to t=0. Thus, the
above integral makes sense.

To compute this integral we decompose it as

_1
k=3

(10) Cd,r)=—Cirimldodl = (I+K),

where I and K denote that contributions to the last integral from all Q =[a, b, c] such
that ac +0 and ac =0, respectively.

To simplify I we proceed as in [K-Z], pp. 223. From the following computation it
will be clear that we can in general not interchange summation and integration. Instead
we write

Tromims(-5-7-1)

—ioo —ioo —iA /A —ioo

Here interchanging integral and sum is allowed since the series is uniformly convergent
on the compact pathes joining i4 and i/A and —i/A and —iA, respectively. In the third

—1 0 —1
and fourth integral we substitute t — -~ and Q— QoS! where S =( > Then

1 0
we obtain
(11) I=Il+12+13,
ioo (X_t)zk“Z
I, = Am,40(Q) ———dt,
' Q=[u,I§]e.@°A 0 —goo Q(t)
ac*0
. (X — )22
I, = —lim Y Ima(Q) [ gt
420 g=[4,b,cle 24 —iA ()
4>0 ac*¥0
. i (Xt+1)2k~2
Iy = lim > Im1,(Q) | ————dt.

X
420 g=(q,b,cle 245 iz o)
4>0 ac¥0
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The inner integrals in I, are absolutely convergent and can easily be evaluated (cf.
Lemma A2 of the Appendix). One has

(12) Iy =Cy 44 Z X:,AO(Q) sign (a) Q(X)kul,
Q=[a,b,cle2°-A
ac<0

with a constant C, , 4, depending only on k and 4,4, as given in the appendix. To
simplify I, we apply Proposition A1l. The contribution to I, from those Q =[a, b, c]
with positive ¢ can immediately read off from this lemma. To treat the contribution
from those Q with negative ¢ we have to substitute Q — —Q o g, i.e.

[a’bac]'—»[__a,b’——cl
to put it into a form such that the Proposition A1 can be applied. We obtain

—2qiX3k2
(13) I, "—’m [Com, 404, ror, 40, 40 (K) + (= 1)* €lom, 404, ror, — 40, 40(K)]-

Similarly we find

2riX k2

M =g hen

[Cm, a0 4,ror, Aco, 40 (K) + (— 1)k €Cm, 404, ror, — Aco, 40(K)]-

To compute K we choose a positive integer N as in the statement of the
Proposition (e.g. N =m|4,|). Using it we can write

K=N~"{ Y A0 ] ck(’”“)(X—t)“*Zdt

Q=[0,b,cle2°A —io0 N
0<c<N

io a+b/t\ _ -
Y tmal@ | q(—-——N )t HX -2t
Q=[a,b,0]e2°4 —io

0O<a<N

ico bt b/t+c> _ 1 _
+ 4 Cil = |+ Cl—— ¢t 2"———> X — )% Zdt},
Q=[O,l§)]e.@oA Xm, 40(Q) __L( k(N> k( N (bt)" ( )

where we use

GO=2 GreoF = k=)

1 —zni(_l)k—l <d>k-1 eZnit

P Le2mit 1

dt
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These integrals have been evaluated in the appendix (cf. Lemma A3), and inserting the
values computed in the appendix we find

Nkt bX +c¢
(15) K= Ck.AoA { Z X:,AO(Q) — B, < >
Q=[0,b,cle 2°A4 k N
O0=<c<N

— z X;:,,AO(Q) Nk— Bk(a+b/X> XZk—Z}'

Q=[a,b,0]e2-A
0<a<N

Inserting the formulas (12), (13), (14), (15) into (11) and (10), picking up the constants

1

k‘..,

€ 2
—Chr1,m X |40 4 X Cy, 404

2k—2
o ) 27ri(—1)"_1( )
__(281)" Y)Y —e <2k—2> 1><|A0A|k~%x k—1

h - 1
m T k—1 (AOA)k 3
2 2 k—1
:A<‘8:> =bk'm
Vg mi

. k-1 —2mi
Chv1,m X |40 4| k=1 22k

and

. 2 2e\k ! (_l)k(k__l)'z k—%_
“wVT(m—l> xmuol‘) =by X7,

we find that C(4, r; X) equals €, , (4, r; X). This proves the proposition.

§ 5. The proof of the main result

In this last section we collect the facts of the previous discussions to complete the
proof of Theorem 1 and 2. We assume throughout that k=2. For the case of weight
k +1=2 the reader is referred to [S1].

For ¢ e {1} let S;., denote the subspace of S;,, , spanned by the Jacobi forms
i (@, z; X) (A eSL,(Z), sign(4,)=¢) appearing in Proposition 4, and let S, be
the space of functions spanned by all the ¢, , 4p(t,2) with 44,7, 4, P as in
Theorem 2, sign(4,) = ¢. Finally, let K* be the intersection of all kernels ker (%, , ) with
sign(4,) =¢. We shall show in a moment

(16) Sper. = (K°),

per.

(17) S;er. = :pher. .
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Here (-)' means the orthogonal complement with respect to the Petersson scalar
product. For ¢= —1 it was shown in [S-Z], Theorem 3, that K°=0. Thus the equations
(16), (17) clearly imply Theorem 2 for ¢= —1. Moreover, it was shown loc.cit. that the
sum of all the images of the %, , with negative 4, is just the subspace spanned by all

cusp

modular forms f in IM3;°P(m) whose L-series L(f, s) satisfies
L*(f; 9)=Q2n/m)"*I'(s) L(f, s)= —L*(f, 2k —s).
Thus, the “—"-part of Theorem 1 is a consequence of Theorem 2 by noticing that

on,rO,Al,rl,A,P(T) = ‘%11,r1 (¢Ao,r0.A,P(T’ Z))

For the “+”-case we can so far only deduce that S, =(K™)*, and that the subspace

spanned by all f, , 4 . 4p(t) (4,>0) is just the sum of all the images of the %, .
with positive 4,. However, it will be shown in [S2] that this image is precisely that
part of IMM3,’F (m) spanned by all f such that

L*(f, s):=@2m/m)""I'(s) L(f, s)= + L*(f, 2k — ),

and that K* =0. Thus, the equations (16), (17) imply the “+”-parts of Theorem 1 and 2
as well.

The equation (16) follows from the logical equivalences
Al Liore (5 X)) =0 < 05, Sy, ¢ =0 < ¢ € ker (S, ,,),

valid for any 4, with sign(4,)=¢ and any ¢ € S}, ,. Here the first “<” follows from
Proposition 4, and the second one from Proposition 3.

To prove (17) note first of all that for any X the polynomial
Py(a,b,c)=(@X?>+bX +c)f 1

0> 0 0

satisfies (57)7 ~ 34 7e

) P, =0, and that

¢A0,r0,A,Po(T’ Z) = %I;,ro('; X)

The latter is easily checked using the characteristic properties of the Bernoulli
polynomials which were recalled in § 1 when we defined the associated polynomials P,
and P,. Thus, S;., =S To prove the converse inclusion note that, for any fixed
49,79, A, the map P> ¢, , 4p is linear. Hence, it suffices to prove the following
Lemma. .
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Lemma. Let P(a, b,c) be a homogeneous polynomial of degree k in the three
variables a, b, c. Then the following two statements are equivalent:

) 0? 02
(1) One has <W——5E> P=0.

(i) The polynomial P can be written as a linear combination of polynomials of the
form (aX*+bX +co)f (Xe).

Proof. That (ii) implies (i) is verified by direct computation. So assume (i). We
prove (ii) by induction on the degree k of P. If k=0 then (ii) is trivially true. So assume
k>0 and that (ii) is true for all polynomials with degree strictly smaller than k. Now,
since P satisfies (i), the polynomial b P does so too, and by induction hypothesis it
can thus be written as a linear combination of suitable (aX?+bX + ¢)* 1. Integrating
with respect to b now shows that P is a linear combination of polynomials
(@aX?+bX +c)* up to the addition of a polynomial P, which is independent of b.
0? .

Clearly P, satisfies (i), and hence 3adc P,=0. But this means that P,=aa*+yc* for
adc

suitable constants «, y. From this it is clear that P, satisfies (ii) (use e.g.

i
i,
ak_ k

y (a(e"f”)2 +b(e

1
— )+ ) —c*)
2k vmod 2k )

and therefore P does so too. This concludes the proof of the lemma and the proof of
Theorem 1 and 2 as well.
Appendix A. Zetafunctions associated to binary quadratic forms modulo I'y(m)

In this part of the appendix we prove the following Proposition A1 which was
used in the computations of § 4.

Let Q =[a, b, c] be a polynomial of degree <2, and let { € P,(Q) (= Q v {0}).
To the pair Q, & we associate a Dirichlet series {, ((s) by setting

o0 R . ’
Lo.c(5)= 2. (_Qsé_n_)’

n=1

where, for any positive integer n, we use

ax’*+bxy+cy*=n

R(Q’g,n)z#ro(m)Q\ <x>622 X
Y /\;Eémodfo(m)
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Recall that %Efmod I'y(m) means that % and ¢ lie in the same orbit of the natural

action of I'h(m) on [P, (@), and that I';(m), denotes the stabilizer of Q in I'y(m). Clearly,
this zeta-function depends only on the I'j(m)-equivalence classes of Q and £. These zeta-
functions are connected to the zeta-function defined in § 1 by the formula

Z Xm,Ao(Q)
02, (dodroryrom [SL2(Z)g: To(m)]

(18)  Lmsosroneaols)= {o,¢(5),

where Q runs through a complete set of representatives for 2,,(4, r) modulo I'y(m).

Lemma. Let Q be a polynomial of degree <2 with integral coefficients, and let €

denote the I'y(m)-equivalence class of Q. Let & € P, (@), £=§, ged(x, y)=1. Then

Lo.e(8)=C(2s) ),  Q(x»"
Q' e€/Io(m)e
Q'(x,y)>0

Here ((s) is the Riemann zeta-function, and the sum is over a complete set of represen-
tatives for € modulo Iy(m); (= stabilizer of & in Iy(m)). (Recall that we use
Q(x, y)=ax*+bxy+cy? for any Q=[a, b, c].)

Proof. Denote by RP"(Q, &; n) the number of all coprime pairs of integers x, y

modulo I',(m), such that Q(x, y)=n, and —;— is I'y(m)-equivalent to &. Clearly

R@ &m=Y Rpr.<Q,¢;d%—>.

d2|n

Now the maps M +— M ¢ and M — Q o M induce bijections

X 2
I\ (y) eZ

respectively, where we used I' = I'y(m). But via these isomorphisms we find

ged (x, y)=1
T \I'/T, = BT,

/\izémodf
y

R™(Q, & m)=#{Qe €1 QO =n}/T,.

Inserting this into the above equation for R(Q, &; n), and rewriting the resulting
equations in terms of Dirichlet series we obtain the asserted identity.
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The following Proposition was proved in the case m=1, D not a square, in
[K-Z], Lemma on p. 226.

Proposition A1. Let € be the I'j(m)-equivalence class of a quadratic polynomial
Qo(t)=agt* + byt + co. Assume that Qq(t) has real coefficients and that D:=b% —4aycy>0.
Let A € SL,([R). Then, for any integer k=2 and any integer v=0, the limit

A tvdt
lim Z f -
420 g=[a,b,cle®-4 —ii Q)
4>0 a¥0,c>0

equals

. oy 2w (o a0(k)
[SL2(Z)a0: Tomao™ 53—~

when v=0, and it equals 0 otherwise.

Remark. Note that the Proposition together with (18) yields the formula

_ 2 (X —t)?*2dt
lim Y gha@ ] o
120 Qe2i(dodron —iA Q)
Q=[a,b,c]
a*0,c>0
2miX2k?

= Bk—1) L2k cmaodror40.40(K)-

Proof. To compute the limit we choose a positive integer N such that €- A4
- . 1 0\ .
is invariant under Q +> Qo (N 1), i.e. under [a, b,c]+— [a+bN+cN?% b+2Ng,c].

Then we arrange the terms of the sum so that we first sum over those Q =[a, b, c] with
0=<b<2cN and for each such Q over all

b
[a+bNn+cNn% 2Ncx, c] <x=§—07v—+n, nerz, (ZCNX)Z*D>-

M‘oreover, we write
2 , D ,
[a+bNn+cNn* 2Ncx, c] (t)=c(14+ Nxt) e t°.

Finally we substitute t — At. Thus, we have to compute

oy 1 p t'dt
(19 Emr 0y S ¥ Af 5 .
R S L '[(1+let)2—4—cz(m2]

0<b<2cN (2cNx)2%D
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Now the inner sum tends to

to i pdtdx
j (11 N2k
“w 2 (14+ Nxt)

for A— 0, and it does so uniformly in b and c. Thus we see that the expression (19)
equals O for positive v. So let v=0. Then we may interchange in (19) the limit and the
2mi
Rk—1)N"
can choose N=[SL,(Z),0:Iy(m)40], and then the condition “0<b<2¢N” means that
we sum over a set of representatives for € o A/(A™! I'y(m) A),. Hence, after making the

substitution Q — Q o A we find for (19) the expression

first sum, and insert the value of the last integral, which is Now, for N we

2mi
_am (Q - A)(0)
(Zk — I)N Qe%/;o(m)/w
0°4(0)>0

Applying to this the above Lemma we recognize the asserted formula.

Appendix B. Computation of some integrals

In this part of the appendix we calculate some integrals which have been used
when we computed the period polynomials of the kernel functions of the Jacobi forms
— elliptic modular forms correspondences. The following two lemmas can in principle
be read off from corresponding calculations in [K-Z]. However, because of slightly
different normalisations and the need of slightly more general formulations we include
them here with independent proofs. For the following lemma compare [K-Z],
pp- 224, 225.

Lemma A2. Let Q(t)=at*+bt+c be a quadratic polynomial with real coefficients,

and assume that ac+0 and D=b?>—4ac>0. Then for any complex number X and any
positive integer k the integral

+io (X—-t)”“z

T

is absolutely convergent; it equals O when ac is positive, and for negative ac it equals

Cy,p sign(a) Q(X) 71,

where
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. . . X — )2 .
Proof. Using ac+0 and D>0 it is easily seen that (4Q(+)" has no sin-

gularities on the imaginary axis and that it is an ¢(t~2) for t — ioco. Thus the integral
in question is absolutely convergent.

To compute this integral note that for any sufficiently small 1 e C and for all
t € iR, we have |4| | X —t|><|Q(t)|. Thus we can write

0 B +ioo (X_t)Zk—Z +ico B (X—t)Zk'z
Akt et = e 1
k§=:1 ~§m o(r)* —.goo kgl ()
+ioo dt

= _L’ 00 —AX =172 27i sign (QA)D%’

where Q,(1)=Q(t)—A(X —t)?, and where D, denotes the discriminant of Q,(t). Recall
1
that sign (R)=5 (sign(a) —sign(c)) for any R={[a, b, c]. The interchanging of summation

and integration is easily justified by doing the above computation with X —¢ and Q(t)
replaced by its absolute values, noticing that the resultant integrals are finite and
applying Lebesgue’s theorem. For the last equality we used that for any real quadratic
polynomial R(t) with positive discriminant, the integral of R(t)"'dt along the imaginary
axis equals 27i times the sum of the residues of the integrand in the right half plane,

1
which in turn equals sign(R) - (discriminant of R)*. Now, by a simple calculation and by
continuity

D, =D+44Q(X), sign(Q,)=sign(Q),

respectively. Thus

i et +ioo (X_t)2k~z

| o dt =2 sign (0) (D +410(X))
k=1 —io0

(1

2 (3 0\ (410X
=2mni sign(Q) Z (k—1>( (X))

Equating coefficients of these power series in 4 finally proves the asserted formula of
the lemma.

To state the following lemma we recall that for any positive integer k and any
complex t € C\Z from the upper half plane we use

_27.”'(__1)k—1 dk—l e27\:it
20) CO="0 T adT T

51 Journal fiir Mathematik. Band 411
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Lemma A3. Let a, b, ¢ be real numbers such that b+0 and 0<a, c<1. Then for
any complex number X and any integer k=2 the following integrals are absolutely
convergent and the following equalities hold:

+ico
[ Cbt+o)(X—1)**2dt= C’;”z B.(bX +¢),

—ioo

+ioo Ck,b2

I Ck(a+b/t)t“2k(x_t)2k—2dt=_ -

—iw

B(a+b/X) X2,

i Ck <€> 1 C b
| Ck(bt)““tT"‘(bt)k (X_t)zk—zdzz—’;{'—”2 (Bk(bX)—Bk <}> X2k~2>.

—ioo

Here B, (X) denotes the k-th Bernoulli polynomial and

2mi(—1)! <2kk:12>

Ck,bz: 'b|2k~1

(as in Lemma A?2).

Proof. Immediately from the definition (20) it is clear that C,(¢) is holomorphic
in C\Z, that it is exponentially decreasing for R(t) fixed and J(t) — + oo, and that it
has a pole at t =0 with polar part ¢t *. These statements immediately imply the absolute
convergence of the integrals in the lemma.

To prove the listed identities note that the second one follows from the first by
1 1 ) .
substituting tr—-»;, X HY' Moreover, the third one follows by adding the first two,

setting a=c =24 and letting 1 tend to 0. We leave the details to the reader. Finally, to
prove the first equation, note that it suffices to prove it for b=1: multiplying both sides
of the first equation by (—1)%, if necessary, and using C,(—t)=(—1)*C,(t) and
B,(1— X)=(—1)* B,(X) we may assume first of all that b>0; then substitute

Thus, writing
+ioo c+ioo
5 Cit+o)(X—t)*2dt= § Colt) (X +c—t)? 24t
we recognize that we have to prove
2k—2\ B, (Y
(21) 5 Ck(t) (Y—t)2k—2dt=2ni(—l)k'l< > _i_)
R(t)=c k_—l k
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To do this call the left hand side of this equation f(Y). Shifting the path of
integration to the left crossing 0 but not —1 gives
S(Y+1)=f(Y) = —2mi Res,—o G (1) (Y — 1) 2,
i.e.

FY +1)—f(Y)=2mi(— 1) <2kk:12> Y L,

Since f(Y) is clearly a polynomial the last equation determines it up to a constant. On
the other hand side the polynomial on the right hand side of (21) is a solution to the
last equation. Thus, to conclude the proof it suffices to check for instance that

1
[ f(y)dy=0. But indeed,
0

dt

1 B t2k—1_(t_1)2k—1
(I)f(y)dJ —mf)zc Ci(1) TE—1

t2k—1 t2k"l
= — C,(t) ——dt=27iRes,_ — =0,
<m,j=c gt ) CxO) gy = 2miReso Gul0) =0
(6] 1)

This proves the Lemma.
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