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1. Introduction and discussion

Fix a positive integer m and denote by J5 ,, and J 3 ,, (S7., and S5 ,,) the space of
holomorphic and skew-holomorphic Jacobi (cusp) forms of weight 2 and index
m respectively. By definition these are the spaces of smooth functions ¢(z, z) in two
variables 7, zeC, Im(tr) > 0, which are periodic in t and z respectively with

—1 . z2
period 1, which satisfy d)(T, %)e“z’”"’T = 12¢(1, 2) if ¢ is a holomorphic Jacobi

1z

form, and ¢<—j—,—>e“2"i"4 = T|t|p(r, z) if ¢ is skew-holomorphic, and the
T 1

Fourier expansions of which have the form

=4 44| >
+

27| —— )+ rz
¢)(1', Z)= Z C¢(A,r)e m( yrmll A 0T
AreZ
A = r*mod 4m

(t=u+iv)

where the coefficients C,(4, r) depend on r only modulo 2m and vanish for 4 >0
(4 20) if ¢ is a holomorphic Jacobi form, and for 4 <0 (4 £ 0) if ¢ is skew-
holomorphic.

Furthermore, we consider integral quadratic polynomials [a, b, c](x)=

ax®> + bx + c. The group SL,(Z) acts on these by [a,b, CJO(Z f:)(x):

[a,b,c] <ax j_ g)(yx + 6)2. For a pair of integers 4, r with 4 = r> mod4m define
yXx

2(4,r):= {[ma, b, c]la, b,ceZ, b* — 4mac = 4, b = rmod 2m} .

7 Z

This set is invariant under I’ 0(m)=<mZ Z)mSLZ(Z). For a fundamental
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discriminant 4, which is a square modulo 4m we denote by
Xa,:{[ma, b, c]la, b,ce Z} — {0, + 1} the generalized genus character introduced
in [G-K-Z], ie.

@) if 4, divides b*> — 4mac such that (b* — 4mac)/4,

n is a square modulo 4m and gcd(a, b, c, 4,) =1

XAO([ma» b7 C]) = <

0 otherwise .

Here n is any integer relative prime to 4, and represented by one of the quadratic
forms m,ax? + bxy + m,cy* with m = mym,, m;, m, > 0. (If gcd(a, b, ¢, 45) = 1
) .. (b* — dmac) . 4, .
such n, m,, m, exist, and if — is a square modulo 4m the value <7> is
0
independent of the special choices of n or m,, m,, cf. [G-K-Z; 1.2, Proposition 1]
The function x4, is I';(m)-invariant. Finally, for any integral [a, b, c] and any

integer N # 0 set

sign(a) if ac <0

sign([a, b, c]) = {

0 otherwise ,
and
a 1 .
_(ﬁ_§> fc=00<a<N
ey([a, b, c]) = c 1 A
+ N3 ifa=0,0<c<N
0 otherwise .

Note that for each discriminant 4 there are only finitely many integral polynomials
[a, b, c] with b* — dac = A such that sign([a, b, c]) or ey([a, b, c]) is different
from 0. Moreover, sign([a, b, c]) # 0 implies b*> — 4ac > 0, and &y([a, b, c]) + 0
implies that b? — 4ac is a perfect square.

The aim of this paper is to state (and to prove) the following theorem.

Theorem. For AeSL,(Z) and integers A,, r, with A, a fundamental discriminant,
4, = rimod 4m, define

2m’(~r—z;Au + r’+ 'Aliv + rz)
¢A,A‘,,r0(r’ Z) = Z CA,AD,rU (A’ r)e 4m 4m
AreZ
4 =r*mod4m

where

Cy 4,0, (A,7) = z X4, (Q) [5ign(Q ° A) + &y, (Q° 4)] .

Qe 2(44,,rr,)

Then ¢4 4, (%, 2) defines a holomorphic Jacobi form in J; ,, if 4, <0, and a skew-
holomorphic Jacobi form in J 3., if 4, > 0. Moreover, any Jacobi form from J 3, , or
J 3, m is obtained as a linear combination of the functions ¢ 4 ,.,,(, z) and of Eisenstein
series.
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Remarks 1. Note that the sum defining C, 4, (4, r) is actually finite since the
expressions sign(Q ° A) and &, 4,(Q ° A) vanish for all but finitely many Q with given
discriminant 44,. 2. The term &,4,(Q ° A) is non-zero only for the 4 which are
square multiples of 4,. 3. ¢4 4, (7, 2) for fixed 4, r, depends only on the coset of
A in I'o(m)\SL,(2Z), as is easily deduced from the I'y(m)-invariance of y,, and
2(444,rry). 4 The Fourier coefficients of the Jacobi Eisenstein series can be
explicitly calculated (cf. [E-Z], [S]).

There are various intimate connections between Jacobi forms and elliptic
modular forms; via these connections, the stated theorem can also be read as
a theorem about elliptic modular forms. The deepest of such connections is due to
the fact that Jacobi forms represent, in a sense, a law which combines interesting
arithmetical data of elliptic modular forms: Hecke eigenvalues and special values of
twisted L-series in the critical strip.

We explain the latter statement in more detail for the case of Jacobi forms of
weight 2. There is, for each pair of integers 4,, r, such that r§ = 4, mod 4m and
such that 4, is a fundamental discriminant, a lifting map % , which associates to
a Jacobi form ¢ from J3 ,, or J3 , with Fourier coefficients C,(4, r) an elliptic
modular form with [-th Fourier coefficient

4, 2o
20)e, (4. r0- ).

If ¢ is a cusp form this modular form is always a cusp form apart from the case
4, = 1. In the latter case it equals a cusp form plus a linear combination of
functions E¥(dt), where d runs through the divisors of m and E¥ denotes the
(non-holomorphic) modular form of weight 2 on SL,(Z) which is given by

* ____1 1 2milt
B0 =57 * Saimm & (Zd>e :

Iz1 \djl

The maps % , are Hecke equivariant, their images are contained in a certain
natural subspace M, (m) of the space of all elliptic modular forms of weight 2 on
I'o(m) which contains all newforms, and there exist linear combinations of them
which define isomorphisms of J 5 ,, ® J5 , with M, (m) (cf. [S-Z], [S]). Combining
these statements with our theorem, we find that the functions %, , (¢4 4,.., ), Where
the 4, (i = 0, 1) are fundamental discriminants with 4; = r? mod 4m and A ranges
over I'y(m)\SL,(Z), span the space M,(m) (up to possible linear combinations of
Eisenstein series). In particular, all cusp-newforms of weight 2 on I'y(m) can be
obtained by this explicit construction.

Iff (t) = Y, a(l)e*"*is a new- cusp- and Hecke eigenform, and ¢ the Jacobi cusp
form in S5 ,, or S5 ,, corresponding to it under the lifting maps %, ,, then for any
fundamental discriminant 4 which is a square modulo 4m and prime to m one has

_J14Ks1¢>
ICy(4,1)? = iRy L(f,4,1).

Here L(f, 4,5) =Y, - (?)a;sl) is the twisted L-series of f, for r one can choose any

solution of r* = Amod4m and ‘(|)’ denotes Petersson scalar product (cf. Sect. 2
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for the exact definition in the case of Jacobi forms). This is proved in [G-K-Z;
Corollary 1 in Sect. 11.4] for holomorphic Jacobi forms but is true for skew-
holomorphic ones too (one can copy the proof given in [G-K-Z], using the
Proposition and its Corollary in Sect. 2 of this paper, to derive the corresponding
result for skew-holomorphic forms.) Thus the stated theorem can then be used to
produce ‘Tunnell-like’ theorems in an algorithmic way, i.e. it can be used to
describe explicitly a computable function of fundamental discriminants 4 whose
square gives |4|'2L(f, 4, 1) up to a constant independent of 4.

As an illustration of the theorem we consider the simplest non-trivial case, i.e.
the case m = 11. The space of modular forms of weight 2 on I'y(11) is spanned by
the Eisenstein series

E(t) = E¥(x) — 11E¥(117) = + z < Z d)q’
= 11 44|l
and the cusp form
S(r) = n(x)*n(117)? 1'[ (1 — q"2(1 — giim?

where q = e2™*. The space S; ;; contains the ‘trivial’ cusp form

ro(r 42057t + 225,
T(T; Z) = Z (r + 225)627“( v 77 iv + rz)

r,seZ

which satisfies & (T) = E, as can easily be checked. The set I'o(11)\SL,(Z) is
0
indexed by elements of P*(Z/11Z) via d <> I'y(1 1)( ) forde Z/11Z and with

1 d
d’ denoting any integer from the residue class d, and oo I'(11). For
PePY(Z/11Z) set ¢p = ¢ 4.1.1 (A any matrix corresponding to P). Now a short
calculation shows ¢, = ¢, =0, and for d + 0, oo the formula

C¢P(A, r) = Ndy(d) - NA, r( d) <<r;11* )) - <<%>> ’

Here N, (d) denotes the number of triples (a, b, c)e Z* which satisfy

* —_
b? — dac = 4, b2<A,a>0,aswmodu,cs(b 2’)dmod11,

we use d* for the inverse modulo 11 of d, and ((x)) is the periodic function with
period 1 which is 0 at the integers and equal to x — 4 for 0 < x < 1. In particular,

one has ¢, = — ¢_,for all d, and—as it is easily verified by calculating the first few
coefficients of the ¢,—
9 3 -3
¢1=_1T’ ¢2_HT ¢3 = ¢y, ¢5=—TT-

Computing the first few coefficients of &, ;(¢;) shows that they coincide with
those of 4(S + ffE). From the theory quoted above we thus deduce
&#1.1(5¢5 — ¢,) = S, which yields amusing formulas for the Fourier coefficients of
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S, and that the values of |4|'2L(S, 4, 1) are proportional to the squares of the
Fourier coefficients of 5¢5 — ¢,. The first few of these coefficients C(4, r) are

4 1 45 9121620 25 33 36 37 44 4548 49 53 56 60
Cd,rg)l =35 -2 545006 50010 -310 —10 —5 ...

(For each 4 the symbol r, denotes that solution of r> = Amod 44 which satisfies
0=sr=1l.

The idea for the proof of the theorem is roughly as follows. Any elliptic cusp
form on I'y(m) of weight 2, considered as a holomorphic differential on the
compactification of I'j(m)\$, is determined by its periods. As paths in the upper
half plane for computing the periods one may restrict to hyperbolic lines which
connect 0 and rational numbers equivalent to 0 modulo I'j(m). By the so-called
‘Manin trick’ these periods can be expressed as finite linear combinations of path
integrals of the form [, where A runs through a set of representatives of
To(m)\SL,(Z) (cf. [M]). Let X, (1, z; t) be the kernel function of the lifting map
<4, With respect to the Petersson scalar product. Since a linear combination of
the & , is an injection it is clear that all the Jacobi forms (X} ,(t,z-)f)
together generate S3 ,, and S5, when f runs through the set of cusp forms on
I',(m). By the above any such scalar product can be written as a linear combination
of path integrals jg;” Ha,.r, (T, z; t)dt. Hence all these path integrals together gener-
ate S; ., and S5 ,,. Thus, if we have explicit formulas for the kernel functions and if
we can carry out explicitly the integration along paths joining A0 and Aico, then we
can prove a theorem like the one stated here. (Some of these sketched arguments
are not literally true since certain Jacobi forms in S5, lift to Eisenstein series so
that, for instance, some of the above path integrals are not a priori defined.)

For the case of holomorphic Jacobi forms the kernels ¢} , were constructed
explicitly in [G-K-Z]. However, we do not take these kernels to deduce our
theorem. Instead, we use certain non-holomorphic kernel functions. These are
Jacobi theta series associated to quadratic forms of signature (2, 2). They represent
the first non-trivial examples of Jacobi theta series which arise naturally when one
mimics in the theory of Jacobi forms the well-known construction of the theta
kernels which are used in the theory of dual reductive pairs (cf. [S2]).

There is a twofold reason for considering such theta kernels instead of the
proper kernel functions J_,. First of all, the formula for %, , as given in
[G-K-Z] shows that an explicit computation of the integrals of .} , along the
paths from A0 and Aioo involves some delicate convergence problems. In contrast
to this the corresponding computations using the theta kernels turn out to be
surprisingly simple. Secondly, we would like to treat the case of skew-holomorphic
forms as well but corresponding results as for holomorphic Jacobi forms are not
yet available in the literature. The theta kernels, apart from adding a new (admit-
tedly not very surprising) aspect to the theory of Jacobi forms, allow us to give
a self-contained proof of the theorem which includes holomorphic as well as
skew-holomorphic Jacobi forms. Moreover, the investigation of these theta kernels
as well as the computation of the corresponding path integrals exhibits, in our
opinion, some amusing aspects.
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There remain two points to be mentioned with respect to the proof. The minor
one is that we shall not really consider the integrals [ 44 of the theta kernels but the
symmetrization [ {o* + 245" (for 4, < 0) or the antisymmetrization [ /¢* — [Z45°
(for 4, > 0), both taken, so to speak, in the sense of the Cauchy principal value (to
be precise, we consider [° ([A]* + [gA4g]*) where [A]* is the pullback operation
on differentials of the isomorphism [4] on the upper half plane induced by 4 and
g denotes the diagonal matrix with — 1 and 1 in the diagonal). The reason for this
is that the first integrals would not exist in general since the theta kernels involve
contributions which come from elliptic Eisenstein series. However, to consider
these symmetrized or antisymmetrized versions makes perfect sense. The mappings
which associate to an elliptic cusp form its path integrals ,f;“’ + j:ji)‘” or

% — [Z45° respectively are both injective. It can be shown that they define
rational structures on the space of modular forms of weight 2 on I'q(m). These
rational structures are the natural generalizations to weight 2 forms on I',(m) of
those rational structures considered in [K-Z], and they will be investigated (for
arbitrary weight) in a forthcoming paper by J.A. Antoniadis.

A more serious point is that the proof of the theorem is not completely
independent of the literature. We have to use the fact that the intersection of the
kernels of all the %, , equals 0, i.e. that for any nonzero Jacobi form there is at least
one non-zero Fourier coefficient C(4,12, r,!) with some integer [ and fundamental
4, such that r3 = A, mod 4m. This seems to be a fairly deep fact. Its proof depends
on a trace formula for Jacobi forms and was given in [S-Z] for holomorphic Jacobi
forms. A corresponding proof for the case of skew-holomorphic Jacobi forms is not
yet available in the published literature and will be given in [S]. The suspicious
reader may thus divide the stated theorem into two, one, unchanged but valid only
for holomorphic Jacobi forms, and a second one for skew-holomorphic Jacobi
forms, but which must then be stated in the weaker form that the span of the
® 4,4, (1, z) has as orthogonal complement in S7 ,, (with respect to the Petersson
scalar product) the intersection of the kernels of the &, , . This is what we shall
actually prove (cf. the end of section 2). It is perhaps worthwhile to mention that
one could possibly circumvent this problem by considering more general theta
kernels which would yield lifting maps %, , associated to arbitrary (i.e. not
necessarily fundamental) discriminants 4,. This would mean generalizing the Eq.
(3) in Sect. 3, or, in other words, to study how many and which SL,(Z)-invariant
vectors are contained in the Weil representation associated to a certain finite
quadratic module the definition of which can be read off from the cited identity.
However, we did not pursue this here.

A theorem of similar type to the above was proved by Kohnen and Zagier in
[K-Z]. They show that any modular form on I'y(4), of weight k + % (k even) from
the Kohnen ‘ + *-space, can be written as a linear combination of certain explicitly
given functions which — as examples show — are in general not modular forms but
look very much like theta series with spherical polynomials associated to the
indefinite ternary form b? — 4ac. (In the quoted article this statement appears more
as an incidental remark than as a theorem [loc. cit., p. 236]; moreover, their
observation is strictly true only under the additional hypothesis that each Hecke
eigenform of weight k + 1 in Kohnen’s ‘ + ’-space has non-zero first Fourier
coefficient). Their proof is based on the fact that the coefficients of a Kohnen
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‘ + ’-space Hecke eigenform are essentially given by the periods of the (via Shimura
lift) associated modular form of even weight around closed geodesics, and on an
identity expressing such cycle integrals explicitly as linear combinations of the
values at the integer points in the critical strip of the L-series of the associated form
(loc. cit. Theorem 7). Our formulas for the Fourier coefficients of weight 2 modular
forms on I'j(m) should also be very closely related to the formulas given in [M] for
the Fourier coefficients of Hecke eigenforms. It may be worthwhile to make this
connection explicit.

Finally, it is possible to generalize our theorem to higher weight (cf. [S3]). The
more general result amounts essentially to replacing the terms sign(Q ° A) in the
definition of C 4 4, (4, r) by sign(Q ° A)- P(a, b, c), where P is an arbitrary spherical
polynomial (with respect to the quadratic form b* — 4ac), and the &,4,(Q > A) by
certain terms, which are derived from P and involve higher Bernoulli polynomials.
However, there are certain non-trivial correction terms which have to be added in
the case of weight strictly greater than 2. The precise result is too complicated to be
stated here. Apart from these correction terms there is still one more point where
the case of weight 2 treated here exhibits some special features compared to the
higher weight case. In contrast to the usual expectation, the proof of the corres-
ponding theorem for weight strictly greater than 2 does become harder. First of all,
it cannot simply be carried out by mimicking the procedure of this paper (the
appropriate period integrals of the theta kernels for higher weight do not lead
automatically to holomorphic resp. skew-holomorphic Jacobi forms), and sec-
ondly, the computations given in [S3] (which use holomorphic or skew-holomor-
phic (i.e. proper) kernel functions instead of theta kernels) are partly somewhat
painful. Because of some very subtle questions of convergence — as already in-
dicated above — the computations in [S3] do not even comprise the weight 2 case as
an obvious ‘degenerate case’. For details the reader is referred to the paper loc. cit.

2. Proof

As in the theorem, fix a fundamental discriminant 4, and an integer r, such that
4y = rdmod 4m. Set

2m’<r—z—‘—4u + r+a4 iv + rz>
04tz t)= Y G4, e\ am
A,reZ
A =r*mod4m

1)

where
! () (1)’
C,(4,r;t) =02 D(Q)——exp< -
) QE%(%O,HU) 1a 7’2 m1A0|'72
and o = sign(4,). Here
t=u+tiv,t=¢+iney, zeC

(9 = Poincaré upper half plane of complex numbers with positive imaginary parts)
and we use the notation

[4 b¢](0):= alt? + bE + ¢
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Taking absolute values and writing [a, b, ¢] for Q and (b> — 4ac)/4, for 4 we see
that the series defining @, , (7, z; t) is dominated by

1

w
o2 Z e 271:(4—1) +rIm(z)> Iat + bt +c| =™ F b0

eTmidyi " 2)

rab,ceZ

2
where F,(a, b, ¢) = (b* — 4ac) + F(altl2 + b& + ¢)2. Since it is easily checked that,

for fixed t, the quadratic form F,(a, b, ¢) is positive definite, we deduce that the
series in (1) is normally convergent, i.e. uniformly convergent on compact subsets in
the (z, z; t)-domain, and defines a smooth function in 7, z, t. Moreover @ , (1, z; t)
is obviously periodic in T and z with period 1, and it can be checked by a tedious
but routine application of the Poisson summation formula that @, , (t,zt)
transforms like a Jacobi form of weight 2 and index m (holomorphic for 4, < 0,

—1
skew-holomorphic for 4, > 0) under 1 —» —— z > Z, However, this also follows
T T

from the Proposition below and we skip this computation.

Fix a matrix AeSL,(Z) and define

9(5, 2)i= | (O,,,(t, 2 ADI(AD) — sign(4,) 0., (5, % A*DI(A™D) . (3)
0

at + B o - B o« B dt

Here A *= = ;thus d(At) = ——

ere At = yH(SandA ( 5 )forA (y 6>’ us d(At) R
-1

0 1
with # ranging from 0 to oo. We shall see below that the integral converges
absolutely. Thus ¢(z, z) is well defined and, of course, it inherits from 8, , (1, z; t)

T . . . -1 z
the periodicity in 7, z and the invariance property with respect to t+>——, z+>-.
7 T

Thus, it will be a Jacobi form if it has the correct Fourier development. In fact, we
shall show next that ¢(z, z) has a Fourier development which coincides, up to
a non-zero constant, with that of ¢, 4 , (7, z) as given in the theorem. This will then
prove part of the theorem, namely that ¢, , , (t, z) is a Jacobi form.

To compute ¢(t, z) we first of all rewrite the integrand. Using the easily checked
identities

and A* = gAg, g = . The integral has to be taken along the line ¢t = in

o P
Q A(2) Q(4r) Q- A(r)
m()?’ Im(At)  Im(t)

Q( t)

(Al @

(yt +96)~2

we can write
Co4, 7 t):= C,(4, r; AD(E + 8) ™2 — sign(do)C,(4, r; A*t)( — yE + 8) 2
0r 40, R
Tt

=é{ A

Qe2(44,,rr,)

—sign(d,) Y 14@—5—

Qe2(44,,rry)

Q- gAg(t) - w‘}
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v
mMol.
[a,bc]og =[a, —b,c] we find that y, (— Q°g) = sign(d,)x4(Q) and that, for
t =in and QOA\: [a, b, c], one has Qo A(t) + Q°g?Ag(t) = 2( — an* + ¢) and
0°9*Ag(t) = O A(t) = an® + c. Thus

where we put 1= Replace Q by — Qeog in the second sum. Since

1
202 —ifan €Y
CU(A,r;in)=i Y xAn([a,b,CJOA")<—m1+§>e A<"+"> .

N lab, c]e2(d4g,rro)- A

Take here now a typical term with ac # 0 and set n = \/E ¢®. Then

0

c\? + o
| ( —an + %)e N A(‘m * ﬁ) d;" = —sign(a)/lac| | e @ dc(0),

)
where ¢(0) = 2cosh(6) if ac > 0 and c(6) = 2sinh(6) if ac < 0. Thus the latter
integral vanishes for ac > 0 (since then the integrand is odd) and otherwise equals

i . V|
— sign(a)/lac| [ 2 e~ *¥'dx = — sign(a) y.

To handle terms with ac = 0 we rewrite the contribution to C,(4, r; t) resulting
from these terms as

L _ _, 0/
— 20 Y rab0loAN0,m— Y 2, ([0bcoA )
amodmid,l, beZ <modm|dl beZ n
[a.b.0)e 2A4dg.7r) A [0.b. Je 2(A4q.rry) A

where
0= Y  xe T

xeZ
x = amod m|4,|

and where we used that y, ([a, b,c]°A™") depends on a only modulo m|4,|. By
a standard computation we find

T _1 [mi4o| a >_ (0 —_"))
J bumdn =37 (g(o’mmot Omia )

where
1 1
(o= Y = =——u forO<usl.
x>0 X'|s=0 2
x=umodZ

1\ 1 . _
The integral [’ 9c<—>—2d'l is treated in exactly the same way after substituting
njn

-
n
Summarizing we thus have

C.(4, r; in)d(in) = 2i\/m|d,| x (4, r-th coefficient of ¢ 4, ,,(, 2))

o3
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—up to a justification for the necessary interchange of summation and integration,
which will be given below. But then, replacing the coefficients C,(4, r; t) in the
defining equation (1) of @, , (1, z; t) by the integrals fo C,(4, r; n)d(in) in order to
obtain ¢(t, z), we deduce — again the justification for the interchange of summation
and integration is postponed for the moment, — that

¢(T’ Z) = 2lV m'A0|¢A,AD,r0(Ta Z) .

When doing the latter replacement note that one can at the same time replace the
o4 in (1) by |4| since the integral [;° C,(4, r; n)d(in) vanishes for 44, <0.

It may be worthwhile to note that ¢, 4 , is in general not a cusp form,
whereas for square free m it always has to be (since then there exist no non-cusp
forms of weight 2), i.e. for square free m and any r with r? = 0 mod 4m one has

_ a 1
L, wlle00 1)<mlel B 5)

0<a<md,
[a,0,01€ 2(0, rry)e A

c 1
= XO([O,O,C QAA1)< '—_)'
0<c§m|A0| ‘ ] mldy| 2
0,0, cJe 2(0, rry)o A

This can also be checked by a standard computation. (In fact, by the Dirichlet class
number formula each side equals — h'(4,) if 4, <0 and rr, = Omod 2m, and
0 otherwise, where h'(4,) denotes the class number of Q(\/A—o) for 40 < — 4,and
K(=3) =4 K(-4=1

This completes the proof that ¢, , , (7, z) is a Jacobi form apart from some
estimates to justify the above interchanges of summation and integration. So
assume first of all that ac #+ 0. Then one has

© _ c 2 \/W © — il a?n? ? d
e [ | —an+=|e A(a“rr) g’l=<j' + f)—an+£e A<"+?)—”
0 n n 0 Jical n
=2 [ (“same”) (replace n by |c/aln™")
iefal
N 22 A7
<2 | Ragle™ " ——=
Jial Vlc/al
2 — Alac|
= € .
A/ lac|
Furthermore
@ 1©
f16,(mldn=2172%§ Y xeTm™ldy
0 V] xeZ

x = amodm|4,|

1
(replace n by AZn in the first integral), and the latter integral is bounded by
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a constant y independent of a. Now

i

]

0

6 4,.1,(T, 2; At)d(At) — sign(4,) O, (1, z; A¥t)d(A*1)

e maen ) 41

L - ZN(LZ-U + rIm(z)) - nwu <
S22) e m Y e Al
reZ a,b,ceZ 0

ac 0

_ay,+£
n

+ X (j 16,()1dn + | |0c(n)ldn>}
a,cmod m|4,| 0 0

where we wrote (b? — 4ac)/4, for 4 in the definition of ©,,,+,(t, z; t) and where we

have eventually enlarged by summing over all a, b, c € Z. By the given estimates for

the integrals the right hand side is clearly convergent. Thus, we can apply

Lebesgue’s theorem to justify the interchanges of sums and integrals in the

given computation of ¢4 4 ., (1, z). Note that we have also proved

[ 164,.,,(x. 7 A)d(AL) — sign(40) O, ,,(x, 7 A*A(A*D) e~ ™" = 0(1)  (5)
(4]

for v » 00 where the @-constant is independent of u and z.

To prove the second part of the theorem, i.e. that the cuspidal parts of the
@44, (T, Z) span S5, ,, and S; ,, we have to introduce the Petersson scalar product.
Let ¢(z, z) be any Jacobi cusp form from S; ,, or S5 ,,, and let ¥ (t, z) be any — say
smooth — function on § x C such that y(t, z)e ~ ™™= = @(v*) for v » oo with
some k and an (-constant which is independent of u and z. Then the Petersson
scalar product {¢|y¥) of ¢(1, z) and Y (x, z) is defined by

1 /2 1/2 .

{PlY) = —j j f (1, At + Wy (t, At + pe ™ *didududo .

2 & —1/2 —1/2
Here the integral has to be taken with respect to u and v over the standard
fundamental domain & for § modulo SL,(Z),ie. & = {teH| — s su <4, |71 = 1}
The integral is absolutely convergent since for a cusp form ¢(z, z) the expression
@(1, z)e ~ ™™/ js exponentially decreasing uniformly in u and z for v - oo . In
particular, it defines a non-degenerate scalar product on the finite dimensional
spaces S, ., and S ,,. Note that the 4, u-domain of integration is invariant under
(4, wy—(— A, — ). Thus, <@|¥ > = 0 whenever ¢(z, z)Y(z, z) defines an odd func-
tion with respect to the variable z. The latter holds true e.g. in the case that ¢ is
a holomorphic (or skew-holomorphic) cusp form and ¥ satisfies the same trans-

. -1 . .
formation law under 1, z+>——, z as a skew-holomorphic (or holomorphic) cusp
T T

form; namely, applying twice this transformation law to such a {/(t, z) shows that
Y(1, z) is an even function in z in the holomorphic, and an odd function in z in the
skew-holomorphic case.

In the next section we shall need a more conceptual way to look at or the
Petersson scalar product. To explain this denote by #(Z) = SL,(Z)><Z? the
Jacobi-group over Z, ie. the set of all pairs A[A, u] (AeSL,(Z) and A, peZ)
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equipped with the multiplication
ALA, p] - A'[A, ] = AA (A, wA" + (X, 1]

The Jacobi group acts on $ x C by Y*(z, z) = s ﬂ,w (for Y= = b
yr+é yr+06 7 0

[4, #]) and on functions ¢(z, z) by

_ vz

_f(a B —e ¥ at+f  z
((M (7 5>>(t’z)_ (yt + 0)? ¢<yr+6’yr+5>

O17[4 p(z, 2) = €™ (1,2 + AT + )

and

and also by

_ vz

f(* B _ e s at+f oz
(d" <v 6))“’2)‘(vf+a)|yr+at“’(w+a’w+5>

and ¢|*[4, u] = ¢| [4, u]. It is easily checked that a holomorphic or skew-
holomorphic Jacobi form ¢ (of weight 2 and index m) satisfies ¢|” Y'=¢ or
¢|* Y= ¢, respectively, for all Ye #(Z). If ¢(z, z) and (1, z) are as above and if
¥ (1, z) additionally satisfies the same transformation law with respect to #(Z) as
¢(1, 2) then the expression @(t, 2)Y(t, z)e ™" "v? (z = x + iy) is invariant by
replacing (z, z) by T (z, z) for all Ye #(Z). Moreover

@l>= [ oY@ e ™" 2 dr,

F@)\$ xC

where dV = d__u dz;gix dy .

is the #(Z)-invariant volume element on $ x C and the
integral has to be taken over any fundamental domain of $§ x C modulo #(Z).
(For more details or proofs of the facts listed in this paragraph the reader is referred
to [E-Z].)

Let now ¢(z,z) in S5 ,, and S5 ,, be from the orthogonal complement of the
span of the ¢ 4, ,(t, 2). Thus

PlDas0.r,> =0 (6)

for all A, 4,, r,. We have to prove that (6) implies ¢ = 0. To interpret (6) note that

0,,..(t,z;t) as a function of t, for fixed t and z behaves like an element from

M, (I, (m)), the space of elliptic modular forms on I'y(m) of weight 2. Indeed, the
+ B

. t _
transformation law @Aﬂ,,o(t, z; gm)(yt +0)72=0,,@tzt) for al

(:}t §>el’ o(m) is immediately clear from the definition of &, , (z, z; t) using (4)
and the invariance of x,, and the 2(4, r) under I'j(m). This transformation law with
respect to I(m) is then also fulfilled by f(t):= {$|O,, . (-, "; t)>. Here, of course,
we have to check that the Petersson scalar product is defined, i.e. that @ sorT 2 1)
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as a function in 1, z satisfies the correct boundedness condition. But this follows
easily from (2), which moreover shows that &, , (z, z; t)e =™ “ can be bounded by
a polynomial in v and » which does not depend on u, z, . Thus, for any cusp form
¢, the function f(t) is smooth on $ and can be bounded by a polynomial in
n independently of £ In fact, we shall show below that f(t) is an element of
M, (I'y(m)). Using (5) to justify the interchange of integrals we may rewrite (6) as

[ (@164,.,(-, 5 A)>d(AL) — sign(4)<$|Os,.,,(-,; A*1)>d(A*)) =0 (7)
0

and this is then a statement about modular forms. We apply the following Lemma.

Lemma. Let f(t) be a modular form from M,(I"o(m)), let e€ { + 1}. Assume that for
each AeSL,(Z) the integral

| (f(At)d(A1) + ef (A*1)d(4*1)) ,

)
taken along the path t = in, n > 0, is absolutely convergent and equal to 0. Then f(t)
is identically 0.

This Lemma is probably known to the specialists, but for the sake of complete-
ness we give the short proof in Sect. 4.

Applying this Lemma we deduce from (7) that {¢|@, ,(,";t)) =0 for all
4y, ro. To investigate this we need the following Proposition.

Proposition. For t,t€ 9, zeC, t = u + iv, t = & + in define

2 2 l
0 2ni<i~_s A°u+r + 714 °'w+rz+SIA |5) 2
0t z0 == Y e 4m Cam ~ ol

rsel
r = sromod 2m

Then one has

QA,,. r(,(ra r t)

i vz

m'mt 5
\/r; A, |4, € v (ar+ﬂ z lt)}
_ynm 4ol (4o 0 LAY
e {(0)6720 ;; 1<1)(W-{»5)X 9T+ 6yt + 64,

o 1 7
Here A runs through a set of representatives A = (v g)for (0 >\SL2(Z) and

for each such A the expression (yt + 6)* equals (yt + 8)* for negative 4, and it
equals (yT + 0)|yt + O| for positive A,. Moreover, ¢ = \/sign(4,) (where ./ — 1 = i),
and (%9) =1ifdy=1and (%9) = 0 otherwise.

We shall prove the proposition in the next section. Note that the given formula
for @, , (1, z; t) may also be written as

0
0,z t)—\/mld"l{( ) iT, (r, H+Y Y Y ( ) ( Kot ros) E Y>(1 z lst)}
Y 121 seZ
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with

r—4 r? + |4 ) nmn?

2mi u+ iv+rz -

Ky (t,z;t)=¢€ < am am ermsenldie ~ 4y
and

21u'<rz — szu + s sziv + rz>
T,o(t,2)= Y se" \ 4m am )
rseZ

r = sromod 2m
Here Y runs through a complete set of representatives for #(Z),\ #(Z) (with

1
s), = (0
action | * refers to the first pair of variables, of course. A simple consequence of this

formula is then

z
1)[0, Z]), the + in |* is determined by + 1 = sign(4,), and the

Corollary. Let ¢(t,z) be a Jacobi cusp form from S5, or S5, with Fourier
coefficients Cy(4, r). Then {$|0, , (,";t)) is a modular form of weight 2 on I'y(m)
with Fourier expansion

<¢I@A,,.,°<-,-;r>>=<@> I ( (ﬂ)c <A£ l))
Cirgmizy, V0 )T T LAZT ) Col togirog ) )°

From the Corollary (proof in the next section) we now obtain that our ¢(z, z), i.e.
any ¢(t, z) which is orthogonal to the span of the @, , (1, z; t), must necessarily
satisfy C,(do1%,rol) = 0 for all I 2 1 and all fundamental discriminants 4, and all
ro such that 4, = rjmod 4m, or, equivalently, that it must necessarily lie in the
intersection of the kernels of all the lifting maps ¢(t, 2)—><$|0,, , (-, ;t)>. But
this implies ¢ = 0. For holomorphic Jacobi forms this was proved in [S-Z]
(Theorem 3), for skew-holomorphic ones this will be proved in [S]. This completes
the proof of the theorem.

3. Proof of the proposition and its corollary

Summing over Q = [a, b, c] and replacing the discriminants 4 by (b> — 4mac)/4,
in the definition of @, , (1, z; t) we can write

1
r?dg— b rldg| + b2

O, (1,2;) == Z ez’"( ama, “t amiag Ut 'Z)f,‘,(r, a, b)
r,a,bceZ
b = rromod 2m
where
2ni(£u - —ac—iv>
f,‘,(r, a, b) = Z € 4, |40l X

ceZ
r?4, = b — 4mac mod 4m|d,|

nv
- am|t|® + b¢ + ¢)?
midoly? @I+ e O

X x4,([ma, b, c])(mat® + bt + c)e
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Tof..(r, a, b), the sum over ¢, we now apply the Poisson summation formula. Thus
we write

frab) =Y ¥ a,,,(dm(i)

deZ IAOI
where
1 21ri~c—d—
Urap(d) = —— Y Xs,([ma, b, c])e”" 14l
|A0| cmod |4,]
r*4, = b? — 4macmod 4m|4,|

and

+ o0 at nw

—mi—¢ _ 24 p, 2
gd)= | e "14,1 (mat® + bt + c)e midgimr Al + b+ O mea g
- 00

Here we used that the value x, ([ma, b, c]), for fixed a, b, depends on ¢ only
modulo |4, |. Furthermore we use

- T if 4,<0
Tl -t i 4,>0°

Now, by a simple computation

a 2

L id
2 . a . 45 "
gd) = YA 1 2 a4 b0t ) o = amiaoet L
1 a ot
nw2 —7T4d
4l

ot@) =i "2y

for (a, d) = 0. For (a, d) # 0 let | be the greatest common divisor of a, d, set y = a/I,

for (a, d) # 0, and

d = d/l and choose any matrix 4 in SL,(Z) such that 4 = (‘; 6* ) Then we can

write

__16 \/';|A I% ? 1 0 i 2 Iyt +9) mi?p?
<|A |> = ol“N o eZm(mlvf + b¢) AR nlﬁollm(Af) '
0

N EDE

Inserting this into the formula for f; ,(r, a, b) and then summing in the resulting
formula for @, , (t,z ) over [ 2 1 and a complete set of representatives A for

1
(0 ?)\SLZ(Z) instead of a, de Z we obtain

Jml|d,| 8
O4,r (1,23 t) = ——mz—ln—i‘ 5;90(1, z,0;0,0)

3

> ) Iyt +6) z ___mlp?

(/mldo? L9 i (p<r, L0 lé)e "2, .
n 7T 5T+ o) ot |4,]
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Here for any a,deZ and any z’eC

(t,2,7;a,d) = Z v (d)ehi(%;—bzu + rl’fﬂ‘::jlbziv +rz+ h:’)
qo 9 Ly Ly Uy - L= r’ a, b o o .
b Er‘rnmod 2m
We shall prove in a moment that
. 1(yT + 0) 1(v% 5
Cmelyé’ [4o] (P<T, z, é.@.’lj-_)’ l-))’ la)
14,
Zrzimv,—jég , lé
= 1<p<A’t,—, - ,—;0,I>. (1)
[6'c+8)0t+8)77 \ 0T HT ol
Here on the right hand side that squareroot has to be taken which is positive or has

a/ ﬂ/

positive imaginary part. Moreover A’ = (y' 5

> equals A4 if 4, is negative and it

equals < - g) if 4, is positive. Now
1 ZRiLl
l//r.O,lr(l) =T Z XAO([Oa b’ C])C 140l
|A0| cmod|d,|

if r24, = b*mod4m|4,| and = 0 otherwise. So assume r?4, = b>mod 4m|4,|.
A4 a4 L
Then 4,]b?, thus x4 ([0, b, c]) = <—°> and hence ¥, ¢ () = (T°>3|A0|‘2 since
c
4, is fundamental (recall ¢ =i, 1 for 4, <0, > 0, respectively). For the same
2

b
reason we find that r* = —mod4m and b=rromod2m imply 4,|b and
AO

b . .. .

r= A—r0 mod 2m, and vice versa. Thus, summing in the sum defining ¢(z, z, & 0, 1)
0

over 4,s instead of b we can write in the notation of the proposition

1
2 0 2 sign(dg)§ 0, e T <419>8|Ao|—70(r, z0).

Inserting this in the last formula for @, , (7, z; t) and summing over A4’ instead of
Aif 4, > 0, thereby noticing that A(f) = A( — ) = — A7, we now easily recognize
the asserted formula.

To prove (1) we write first of all for a,deZ

(P(T, Z, Z,; a, d) = Z ‘//r,a.b(d)‘gm.r(ra Z) gmidoi,h(fa Z/) ’

rmod 2m, bmod2m|d,|
b =rromod 2m

where 3y , for any N, p is the basic function

SZ
2ni| —1 + sz
W,n2)= Y e <4N ) .
seZ
s=pmod 2N
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We shall show that for all a,deZ and for all 4 = (a ﬁ)eSLZ(Z)
Y

14
' p2 3
. V'z yz
_2 Y A |
e mm(y'r+6/+l °|yr+5)

dr+ f z z' _
’ Y- ) ’d A ! = 9 4 /; ,d
[0 + 8)0F + 9] w(v’f +07y T+ 87yt 40 (@, d) ) ¢(r, 2,25 0,d)

@2
where (;, g) =Aif 4,<0 and =< ” _;Sﬁ> otherwise. Replacing z’' by
-7
0
—IZ—|—~ and a, d by [y, 16 this then clearly implies (1).
0
Now the left hand side of (2) defines an action of SL,(Z) on functions in 7, z, z’ as

is easily proved. Thus to verify (2) it suffices to check it for some generators A of

1 -1
SL,(Z)-say A = <0 :>and A= (? 0 > The first case is trivially verified. To

treat the second one recall (or prove by Poisson summation)

i

— 2miN— vy — 2nipo
e T -1z e 4 —Zmpo
1 '9N‘p< T i _> = Z € 2N SN,U(‘C’ Z) .

\/ﬁ o mod 2N

0 —1
Thus, for A = ( {0 ) the left hand side of (2) becomes

1 zm,(rr’AO - blz)
1 lpr. —d.b(a) Z € 2m|4,] 19,,,',.'(1', Z) ‘9m|An|, b'(f’ Z’)
2 d 2 " mod 2
2em|4 0 | b J.Zé"zm{l’,u‘ b :nrond02m|’201
b = rromod2m

with ¢ =i for 4, <0 and = 1 otherwise. We thus have to show that

[rr'd, — bb'
1 ) v, -d.b(a)ez"'(m) =¥, . y(d)

1
2 rmod 2m, bmod 2m|d,|
28m|A0‘ b = rromod 2m ¢

if b’ = r'romod 2m and = 0 otherwise. Inserting the defining formula for  .,.,.(*)
and taking on both sides of the last equation the finite Fourier transform with
respect to a modulo |4,] all culminates in the identity

1

3
2 rmod 2m, bmod 2m|4,|
28m|A0| a,cmod|4,] °
b = rrymod 2m
r*d, = b* — dmac mod 4m|d,|

(40872 2+ )
XA(,([ma7 b’ C])e 2m| 4|

b’ =r'romod2m and ]

N tuma v ey " [r”Ao = b2 — 4ma'c' mod 4m|4,| o

0 otherwise .
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This can now be proved using standard Gauss sum identities and we leave this to
the reader.

The proof of the corollary is the usual exercise in unfolding an integral. First of
all we can assume that ¢ is holomorphic or antiholomorphic accordingly as 4, is
negative or positive (otherwise both sides of the identity to be proved are zero; with
respect to the left hand side cf. the remark following the discussion of the Petersson
scalar products in Sect. 2). But then we can write — using the formula immediately
before the Corollary —

[<%>_1 Z)m + m( >¢(T 2)T,,(z, Z)] - dmmy?fu ;2
- Z Z Z <~>— ¢,z )me"""ﬂyq/v’vlz )
r izl sez 1 ot o

Here we still use y and v for the imaginary parts of z and 7 respectively. Further-
more Y runs through a complete set of representatives for #(2Z),\ #(Z) and for
each such Y we use (1, z') = Y (1, z), y’ and v' denoting the imaginary parts of z'
and 7’ respectively. Now unfolding the integral of the right hand side, taken over
a fundamental domain of § x C modulo _#(Z) with respect to the #(Z)-invariant

dudvdxd . .
measure dV = —7)3—2 we obtain the expression

4,\1 0 - 1
Z <—2>— "‘¢(T, Z) KA,,SZV,OS(T, z; ISt)C ~damylfe 2 {7

s pxc (a1 sez\ 1 )10t
But

2ni<f—z;4u+rz+mliv+rz> i —M
Ka,(t,z;t) =€\ 4m am e?miote Tl

(with o = sign(4,)), a fundamental domain for $ x C modulo #(Z), is given by
the set {(t, At + wW)|0=u,pu<1, 0<v, AeR}, and for z= At + u one has

dv = d—u(—iﬁw Thus, carrying out the integration with respect to u and p we
obtain
% 5 ()1 Feart e
where
I (n) = T +jm e 4”( : +rr|r oI5 4 rost + mi? ) e__lZ':—II:jj)dldv

0 -

|40)s%v mlzry2> 1
—n + -
( m 1dolv /v~ 2dv

L
2\/—n—10

=%<I |s|>

N =

< — nl |s|(w+l> !
fe ™ wlwZdw
0
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1

— ln 2 ~ 2nllsln - nl|s|n \/ﬁ} _ L :
'<1A0||s|) e le (=5 afm
1

l"] 2 * o — 4nl|s|nsinh?

— ~ 2nlls| nsin 0

_<|A||s| e ""’fc e’do
0

- 0

— 2nl|s|n

1
l 2z oo 4nl|s|nsinh?@
=< il N sl cosh0df = e

4,11s] 2, 24,)2s]

. 0 .
Observing that Eez"“*”’“”“"”:O for —o0s<0, and that C,(4, —r)=

—Cy4(4,r) for skew-holomorphic ¢ (since ¢(t,z) = — ¢(r, — z)) we obtain the
formula for the Fourier development of {¢|@, ,(-,-;t)) as given in the
Corollary. Note that this formula shows in particular that (¢|@, ,(:,";t)) is
holomorphic. Since we saw in Sect. 2 that it is bounded by a polynomial in
n independently of £ we deduce that it must even be regular at the cusps. Thus, it is
a modular form.

4. Proof of the lemma

For t = in one has A*t = — AfF and thus f(4*t)d(A*t) = — f( — At)d(At). De-

compose f(t) as f, (t) + if_(t) with f,(t) = 2—\/—1?_; (f (@) £ f(— ). The modular

forms f, (¢) and f_(t) have real Fourier coefficients, i.e. satisfy f, ( — f) = f, (t), and
hence f, ( — At)d(At) = f, (At)d(At). Thus, for t = in, the differential f(At)d(At)+
ef (A*¥t)d(A*t) equals 2Re[ f, (At)d(At)] + 2iRe[ f_(At)d(At)] if e= —1 and
equals the same expression but with ‘Re’ replaced by ‘Im’ and multiplied by i if
e = + 1. We assume the first case, the other one can be treated similarly. The
assumption about f then implies that for all AeSL,(Z) both integrals
o Re[ f,(At)d(At)] are absolutely convergent and equal to zero. Thus we may
assume that f equals f, or f_, or, more generally, that f itself has the property that
all the integrals [,* Re[ f(At)d(At)] converge absolutely and equal 0, and we have
to show that f(t) vanishes identically.

To prove this, consider @(B):= [2°Re[f(t)d(t)] for Belo(m) and toe$.
Note that ¢(B) does not depend on the choice of t,. Now let 4, BeSL,(Z)
such that ABA™'ely(m), let B= + T™ST™S ... T™S with njeZ and T, §

o1\ o
Byi= + T"ST™S ... T"S, By:=1. Write @(ABA™")=[""Re[f(Ar)d(Ar)]

t

(=47t [ =[P4+ + [y, and g7 " Re[f(Ad(An]=

ty t Bty B 111’ t

1
f, """ Re[ f(AB,t)d(AB,1)]. Note that one has 7™+ St, = — —+ 1y Thus, set-
1
ting ¢, = in and letting  tend to 0, it is easily deduced from the assumptions about

-1 .
denoting the generators (1 1>, (0 > of SL,(Z) respectively, and set
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f, that LATWS"Re[f(ABjt)d(ABjt)] —nj, 1 f(AB;ico). Here f(s), for any rational
number s or s = ioo, denotes the constant term in the Fourier expansions of f(t) at
the cusp s. Summarizing, we have p(ABA~ ') = Z;;L nj+1f(AB;ico).

In particular, choosing B=1= — TSTSTS in this identity and observing
(1) = 0, we obtain f(Aioo) + f(A1) + f(A0) = 0 for all AeSL,(Z). But this im-

plies f(s) = O for all cusps s. Namely, write s = % with relative prime integers «, 7,

and choose integers f3, § such that ad — iy = 1. We can even choose f, é such that
0 and y + J are prime to m, except in the case m even and y odd, where we choose f3,
0 such that y + ¢ is prime to m and gcd(m, 5) =2 (If a given solution ¢ of
ad — fy =1 has not these properties then choose an integer v such that
0+ yv=—2ymodm’ (resp. mod 2m’ if m is even and y is odd,) where m’ is the
product of all primes of m which do not divide y, and replace d, f by & + yv, B + av).
Setting A = (a ﬂ), we find dico = s, A1 = ﬂ, A0 = E, and, since y + d, J are
y o y+9d o

prime to m (except for the case . . . ) the cusps A1, A0 are equivalent modulo I'y(m)
to the cuspO (except for the case . . . where A0 is equivalent to %). Thus, we have
f(s)+2f(©0) =0 (or f(s) + f(0) + f() =0 if m is even and y is odd.) Since this
equation holds for any s, we now deduce that f(t) vanishes at the cusps.

But then we conclude that Re[ f(t)dt] induces a harmonic differential on the
compactification of I'y(m)\ 9, which, by the above, satisfies jlg"’ Re[ f(¢)dt] = O for
all Be I;(m) and all t,. Hence the function F(t):= j,:) Re[ f(t')dt'] induces a har-
monic function on this compact Riemann surface (to prove the invariance under
Iy(m), use F(Bt) = F(t) + Lﬁ") Re[ f(t')dt'] for BeI'y(m)), hence F(t) is constant,
hence Re[ f(t)dt] = 0, and since f(t) is holomorphic, this finally implies that f(t)
vanishes identically.
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