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Foreword

The following speech1, given several decades ago at the occasion of the

opening of one of the most famous research institutes of the world for

mathematical sciences might help the reader to come closer to answer

the questions ‘What is number theory?’ and ‘What is it good for?’ :

Why do you study number theory?

Mathematics and German share the same disad-

vantage, both are universally applicable and at

the same time they are the summit of artistic cre-

ation of human kind. Why do we need Goethe if

we can express our wishes clearly at the market

place? And for what do we need number theory if

we can solve the differential equation of the heat

equation numerically? Strangely enough, in this

competition those domains do better which have

no imaginable commercial application. One of my

colleagues at Durham University was once asked

by the local TV why he studies the precise dat-

ing of Crete vases, and he answers that this would

be very useful for the study of the migration of

1This is a free translation of a German text which appeared in one of the internal
publications of the Max-Planck Gesellschaft and was in turn probably translated from
the original English speech. We are grateful for any hint to the English original.
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iv Foreword

the Minoan civilization. To my surprise this was

accepted with respectful appreciative murmuring.

Hence our first answer to the question ‘Why

do you study number theory’ should possibly be

‘It is indispensable for the right understanding of

modular forms.’ After we have now put down the

objections of the trifling and superficial people, we

can try to answer seriously. The serious answer

is, of course: ‘Why not?’. Namely, beavers build

dams and cuckoo borrow nests without any intent

of refunding, but only humans (as far as we know)

worry about the questions which prime numbers

are the sum of two squares. Since we reached a

partial freedom from the urgent need of surviv-

ing, the desire for knowledge and the expression

of beauty were always the ultimate goal of the hu-

man race. The purpose of technology and inven-

tion is to give us time for the further study of Bach,

Gauß and Goethe, and not vice versa. But it is one

of the divine compensations for our existence that

the compulsive quest for knowledge almost always

eventually carries practical fruits.

A.O.L. Atkin,
at the occasion of a visit to the
Max-Planck-Institut for Mathematics in Bonn,
Bonn, June 1985.



Preface

These lecture notes grew out of a first course in number theory for

second year students as is was given by the second author several

times at the University of Siegen and by the first one in 2015/2016

at İstanbul Üniversitesi in Istanbul.

There are many books on elementary number theory, most of

them in English, and with very different goals: classical, computa-

tional, theoretical, as a supplement to Algebra or from scratch. In

this sense it would be unnecessary to provide a script. However, the

given courses comprised each only 24 ninety minutes lecture. Hence

the challenge was to reduce the contents and at the same time keep

and prove rigorously key points of elementary number theory. So it

might be helpful to provide a ’shortened stream-lined’ version of el-

ementary number theory as answer to the mentioned challenge. We

hope that we did not do too bad when trying to reach this goal, and

we hope that these lecture notes are indeed useful not only for our

students, but also for our colleagues in future years.

These notes are mainly based on notes on elementary number

theory which the second author collected during the past 15 years

for his usage in his courses on this subject. There are some topics or

treatments of such which may not be found or at least not easily found

at other places. The reader will find a whole section on the basics of

projective geometry since we feel that diophantine equations cannot

v



vi Preface

be treated without a certain geometric understanding. There is a

whole chapter on conic sections and a natural group law on their

set of rational points. This section anticipates in an elementary and

easily accessible way various ideas from the theory of elliptic curves as

it may be found in more advanced monographs. The theory of Pell’s

equation and the theory of continued fractions is here consequently

explained as part of the theory of the group SL(2,Z).

Places where we want to warn the reader from wrong conclusions�

are marked by the first sign on the left hand side. Similarly, we

occasionally leave it to the reader to find or complete an argument

or computation. We indicate this by the second sign on the left side.

Hints to corrections or errors are very welcome.

April 2016 Hatice Boylan and Nils-Peter Skoruppa



Chapter 1

Basics

1. The integers

We shall use Z for the set of integers, Z≥0 for the set of natural

numbers1, and Q, R for the set of rational and real numbers, re-

spectively. Recall that R is the smallest field containing Q such that

every Cauchy sequence has a limit. We shall rarely deal with real

numbers. Elementary number theory concerns properties of integers

and rational numbers. We shall assume that the reader is acquainted

with the notion of an integer and their basic properties, and we shall

not waste time to characterize the integers axiomatically (though this

would be easily possible as we shall indicate in the section “Remarks”

at the end of this chapter). However, there is one property which we

mention explicitly. This is the induction axiom.

Axiom (Induction Axiom). A subset of natural numbers which con-

tains 0, and which contains with every number n also the number

n+ 1, equals the whole set of natural numbers.

This axiom is often applied to prove a property or identity for all

natural numbers. For example one can easily prove via the induction

1We avoid the often used notation N since it is ambiguous: in the literature many
authors include the number 0 in N whereas many others do not.

1



2 1. Basics

axiom that the identity

n∑
k=0

k3 =
n2(n+ 1)2

4

holds true for all natural numbers.

Another important consequence, which we shall often apply is the

following.

Theorem. Every non-empty set of natural numbers has a smallest

element.

Proof. Let A be a set of natural numbers without a smallest element.

We show that A is then empty. Indeed, let B be the set of natural

numbers which are not in A. We have to show that B equals the

set of all natural numbers, and we do this by induction. Clearly, 0 is

in B since otherwise 0 would be the smallest element of A. If, for a

given n, all natural k ≤ n are in B, then all k ≤ n + 1 are in B too

since otherwise n+ 1 would be the smallest number of A. �

2. Divisibility and prime numbers

2.1. Euclid’s Fundamental Theorem.

Definition. For integers a, b, we say a divides b, noted by a | b, if

there is an x ∈ Z such that b = ax.

Remark. 1. The divisibility relation ”‘|“ defines a partial ordering

of Z≥0, i.e. ”‘|“ is reflexive, transitive, and a | b, b | a implies a = b.

2. If d | a, b, it follows d | ax+ by for all integers x and y.

Definition. A number p ∈ Z≥2 is called prime number (or shortly,

a prime), if p has no other divisors than 1 and p.

Theorem (Fundamental theorem of Euclid). Every natural number

possesses a unique prime factorization.

Remark. Be prime factorization (or simply “factorization”) of a

number n we mean a factorization

n = pn1
1 · · · pnrr
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with prime numbers pj and non-negative integers nj . We can of course

assume in such a writing that the exponents nj are strictly positive

and that the sequence of the pj is strictly increasing. That such a

factorization is unique means then that r, the pj and the exponents

nj are uniquely determined by n.

Proof of the Fundamental theorem. For the ‘Existence’ we use

induction: Let n > 1 be a natural number. Let p be the smallest

divisor > 1 of n. If n = p then n is a prime and we are done.

Otherwise p and n/p possess a prime decomposition (by induction

hypothesis), and so n does too.

For ‘uniqueness’, which we prove also by induction, we use the

following fact (which is called Euclid’s Lemma and whose proof will

be given below): If a prime divides a product of integers, then it

divides at least one of these integers. Assume that the uniqueness

of prime factorization is verified for all k < n, and assume that n

possesses prime decompositions

n = pn1
1 · · · pnrr = qm1

1 · · · qmrs ,

where nj ,mj ≥ 1 and p1 < p2 < · · · < pr and q1 < q2 < · · · < qs.

Then p1 divides the product on the right hand side, hence it divides

by Euclid’s Lemma one of the factors, i.e. qj for some j, and then

it even equals this qj (since qj , as prime number, possesses only as

positive divisors 1 and itself). Dividing by p1 we obtain

n/p1 = pn1−1
1 · · · pnrr = qm1

1 · · · qmj−1
j · · · qmrs .

By induction hypothesis we find r = s and ph = qh, nh = mh for

all h. �

As an immediate corollary we obtain that every positive rational

number z possesses a unique prime factorization

z = pz11 · · · pzrr
with primes p1 < · · · < pr, where now, however, the integers zj can

be negative. Indeed, for seeing the existence of such a decomposition

write z = m/n with positive integers m and n, and replace m and n

by their respective prime factorization. For the uniqueness let m be

the product of all pzj with zj > 0 and n be the product of all p−zj
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with zj < 0. Then z = m/n. For a given second decomposition with

powers q
z′j
j (0 ≤ j ≤ s) define m′ and n′ accordingly. Then mn′ =

m′n, and replacing here m, m′, . . . by the corresponding products of

pzj , qz
′
j and invoking the uniqueness of the prime factorization for

integers we conclude r = s, pj = qj and zj = z′j for all j.

Let m and n be two integers, and p1, . . . , pr be the pairwise dif-

ferent primes occurring in the factorization of m and n. We can then

write

m = pm1
1 · · · pmrr , n = pn1

1 · · · pnrr ,

where mj , nj are non-negative integers, possibly equal to 0. If we have

mj ≤ nj for all j, then m obviously divides n, since the quotient of

m/n is a product of primes, hence an integer. The inverse is also true.

If m divides n, then n/m has prime factorization pn1−n1
1 · · · pnr−mrr ,

and since it is an integer the exponents nj − mj must all be non-

negative.

The Sieve of Eratosthenes is an algorithm which allows to com-

pute rapidly all primes below a given natural number n. For this one

notes on a sheet of paper all natural number between 2 and n, and

then one crosses out all numbers which are not primes. Namely, one

starts by crossing out 2 and all multiples of 2. Then one searches for

the first number which is not crossed out (which here is 3), and which

is therefore a prime (since otherwise it would have a prime divisor

which is smaller, but then it would be crossed out). We cross out

all multiples of 3 which are strictly larger than 3. Next we look for

the first number after 3 which is not crossed out (which would be 5)

and which is therefore a prime (by the same argument as before). We

cross out all multiples which are strictly larger. We continue in this

way until we reach
√
n. The not crossed out numbers are then all

primes ≤ n (since every composite number2 ≤ n possesses at least a

prime divisor ≤
√
n and hence is already crossed out).

Theorem. There are infinitely many prime numbers (i.e. for every

integer N there exists a prime which is larger than N).

Proof. Assume there are only finitely many prime numbers. Let

P be the product of all these primes and set n = P + 1. Then n

2A positive integer is called composite if it is not a prime.
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possesses a prime divisor p (for example, the smallest divisor of n).

Since n leaves rest 1 upon dividing by any prime, but p divides n, we

have a contradiction. �

A mysterious function is the distribution of primes

π(x) := card ({p prime |p ≤ x}) .

A plot of the graph of π(x) for 0 ≤ x ≤ 1000 can be found on the

cover. Though π(x) seems to follow no reasonable rule if one looks

from close it seems to be rather regular in the large scale.

Theorem (Prime Number Theorem, without proof). The functions

π(x) and x
log(x) are asymptotically equal for x→∞ (i.e. the quotient

π(x) log(x)/x tends to 1 for x→∞).

2.2. Euclidean Division.

Definition (Greatest Common Divisor). For integers a, b, not both

zero, we call gcd(a, b) := max{d ∈ Z≥1 : d | a, d | b} the greatest

common divisor of a and b.

Theorem. For the gcd of positive a and b we have the formula

gcd(a, b) := p
min{α1,β1}
1 · · · pmin{αr,βr}

r ,

where a = pα1
1 · · · pαrr and b = pβ1

1 · · · pβrr (αi, βi ≥ 0) denote the prime

factorizations a and b.

Proof. Indeed, every divisor d of a and b must be of the form d =

pγ11 · · · pγrr with γj ≤ αj and γj ≤ βj , and vice versa, every integer of

this form is a common divisor of a and b. The largest such integer

is obtained by choosing γj equal to the minimum of αj and βj . This

proves the theorem. �

Definition (Ideal). A non-empty subset I of Z is called ideal, if for

all a, b ∈ I we have a+ b ∈ I and a− b ∈ I.

Remark. Note that 0 lies in any ideal. If a lies in an ideal, then any

multiple of a also lies in the ideal.
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Example. {0} and Z are ideals. More generally, if d is an integer,

then Zd = {dx : x ∈ Z} is an ideal; it is called the the principal ideal

generated by d. More generally, for arbitrary integers ai, the set

Za1 + · · ·+ Zar := {a1x1 + · · ·+ arxr : x1, . . . , xr ∈ Z}

forms an ideal.

Theorem (Principal ideal theorem). Every ideal is a principal ideal,

i. e. one has I = Zd for a suitable d.

For the proof we use:

Theorem (Euclidian Division). For given m, q ∈ Z and q 6= 0 there

exist unique x, r ∈ Z such that m = qx+ r and 0 ≤ r < |q|.

Example. 7 = −5 · (−1) + 2

Proof. Let r be the smallest number in

M :=
{
m− qx : x ∈ Z

}
∩ Z≥0.

Clearly, m = qx+r and 0 ≤ r. If we had r ≥ |q|, thenm−qx−|q| ∈M .

But m− qx−|q| < m− qx which is a contradiction to the minimality

of m− qx.

The uniqueness of x and r is left as an exercise. �

Proof of the principal ideal theorem. If I = {0} then I = Z · 0.

Hence we can assume that I contains non-zero numbers. Then I

contains a positive number (since with a number a it contains also

±a). Let a be the smallest positive integer in I. We claim I = Za.

Clearly, I ⊇ Za (since a ∈ I). Let vice versa b in I. By Euclidean

division we can write b = xa + r for suitable x and 0 ≤ r < a.

Writing r = b − ax we see that I contains also r < a. But a is the

smallest positive integer in I, hence r = 0. Therefore b = ax, that is

b ∈ Za. �

Theorem (Bézout). For every pair a, b ∈ Z, not both zero, there

exist x, y ∈ Z with ax+ by = gcd(a, b).

Remark. For given a, b, c the equation ax + by = c is solvable in

integers x and y if and only if c divides the gcd of a and b.
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Bézout’s theorem is an immediate consequence of

Theorem. Za+ Zb = Z gcd(a, b).

Proof. By the principal ideal theorem we know that the ideal Za+Zb
is principal, that is I := Za+ Zb = Zg for a suitable positive integer

g. Since a and b are in I we conclude that g divides both numbers,

hence the gcd(a, b). Vice versa, the gcd(a, b) divides a and b, and

hence g (since g equals ax + by for suitable integers x and y). It

follows g = gcd(a, b). �

Theorem (Euklid’s Lemma). Let p be a prime and a, b ∈ Z. Then

p | ab implies p | a or p | b.

Proof. Assume p does not divide a. Then gcd(p, a) = 1 and hence,

by Bézout’s Theorem, 1 = px+ ay for suitable x and y. Multiplying

by b we obtain b = pbx+ aby. Since p divides ab we conclude p|b. �

Remark. Inductively we obtain from the theorem the slightly more

general statement: Is p prime, p | a1 · · · ar, then p | aj for at least

one j.

Consequence. Note that this completes the proof of the uniqueness

of the prime factorization of natural numbers.

2.3. Euclid’s algorithm. The most effective algorithm for comput-

ing the gcd of given integers is provided by Euclid’s Algorithm. The

simplest variant is based on the following lemma.

Lemma. For all integers a, b and x, one has

gcd(a, b) = gcd(a, b+ ax).

Proof. Indeed, if g divides the left hand side it divides a and b and

hence also a and b+ax, and hence the right hand side. If g divides the

right hand side it divides a and a+ bx, hence a and b = (b+ax)−ax,

hence the left hand side. So both sides have the same divisors and

are positive, so they are equal. �

Example. Successive application of the lemma (and the obvious rules

gcd(a, b) = gcd(b, a) and gcd(a, 0) = a) yields an effective algorithm
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for calculating the gcd of two numbers.

gcd(102, 27) = gcd(21 = 102− 27 · 3, 27)

= gcd(21, 6 = 27− 21 · 1)

= gcd(3 = 21− 6 · 3, 6)

= gcd(3, 0 = 6− 3 · 2) = 3.

This is easy to put into a program3

Algorithm: Computation of the gcd of two positive

integers

def m y f i r s t g c d ( a , b) :

while b > 0 :

c = b ; b = a%b ; a = c

return a

We can do this also using recursion:

def my second gcd ( a , b) :

return a i f 0 == b else my second gcd (

b , a%b)

If we keep track of all division steps of the preceding algorithm

we can obtain at the same time also solutions x, y as in Bézout’s

Theorem, i.e. solutions of the equation ax + by = gcd(a, b). Namely,

we start at the bottom of the last calculation, which tells us that the

gcd of 102 and 27 is 3, and go up replacing at each level the remainder

by the linear combination of the two preceding remainders. In our

example this goes as follows:

3For describing algorithms we use the programming language Python. If you
want to test or experiment with the code of this script you can easily install Python,
which is freely available for almost any platform. You can, for example, install it in
your Android cellphone (search in the Playstore for the app QPython). More advanced
and also useful for other courses, you might want to use Sage, which is Python with
mathematical libraries covering almost all parts of mathematics. If you would like to
run the examples with Sage in your Web-Browser you might want to open your own
Sage notebook in the SageMathCloud at https://cloud.sagemath.com/.

https://play.google.com/store/apps/details?id=com.hipipal.qpyplus
https://cloud.sagemath.com/
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Example.

3 = 21− 6 · 3
= 21− (27− 21 · 1) · 3
= (102− 27 · 3)− (27− (102− 27 · 3) · 1) · 3
= 102 · [1 + 1 · 3] + 27 · [−3− 3− 3 · 1 · 3]

= 102 · 4 + 27 · (−15).

Replacing the remainders successively by a linear combination of

the two preceding remainders is a recursive procedure. Therefore it

is again extremely easy to put this into an algorithm. This can be

done as follows.

Algorithm: Solving ax+ by = gcd(a, b)

def my Bezout ( a , b ) :

i f 0 == b : return 1 ,0

x , y = my Bezout ( b , a%b)

return y , x−(a//b) ∗y

It is sometimes useful to describe this extended Euclidean algo-

rithm using matrices. For this we record the successive Euclidean

divisions as follows:

a = a0b+ r1 [ ab ] =
[
a0 1
1 0

] [
b
r1

]
b = a1r1 + r2

[
b
r1

]
=
[
a1 1
1 0

]
[ r1r2 ]

r1 = a2r2 + r3 [ r1r2 ] =
[
a2 1
1 0

]
[ r2r3 ]

...
...

rn−1 = anrn + 0 [ rn−1
rn ] =

[
an 1
1 0

]
[ rn0 ] ,

where n > r1 > r2 > · · · > rn > 0, and where rn = gcd(a, b). We

then have [
a

b

]
=

[
a0 1

1 0

] [
a1 1

1 0

]
· · ·
[
an 1

1 0

] [
rn
0

]
.
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The matrix on the right is of the form
[
a/rn u
b/rn v

]
. Its determinant is

(−1)n+1 (since the determinant of a matrix of the form [ a 1
1 0 ] is −1).

In other words, we have

a(−1)n+1u+ b(−1)nv = gcd(a, b),

which provides us with solutions x, y as in Bézout’s theorem.

Definition (Least Common Multiple). For a, b ∈ Z, not both zero,

we call the number

lcm(a, b) := min{d ∈ Z>0 : a|d, b|d}

the least common multiple of a and b.

Theorem. For the lcm of numbers a and b one has the formula

lcm(a, b) = p
max{α1,β1}
1 · · · pmax{αr,βr}

r ,

where a = pα1
1 · · · · · pαrr and b = pβ1

1 · · · · · pβrr denote the prime

factorizations of a and b.

As consequence of the formulas for the gcd and the lcm in terms

of prime decompositions and the formula

min{αj , βj}+ max{αj , βj} = αj + βj

one obtains

Theorem. gcd(a, b) · lcm(a, b) = ab.

Definition (GCD and LCM of more than two numbers). For integers

a1, . . . , ar, not both zero, one defines

gcd(a1, . . . , ar) := max{d ∈ Z≥0 : d | a1, . . . , d | ar}
lcm(a1, . . . , ar) := min{d ∈ Z>0 : a1 | d, . . . , ar | d}

Theorem. One has the formulas

a1Z + · · ·+ arZ = gcd(a1, . . . , ar)Z
a1Z ∩ · · · ∩ arZ = lcm(a1, . . . , ar)Z
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Proof. The first formula we saw already above for r = 2. The general

case follows then on induction. The second formula we leave as an

exercise. �

Remark. For r ≥ 3 we have in general �

gcd(a1 · · · ar) · lcm(a1 · · · ar) 6= a1 · · · ar.

The Euclidean algorithm as explained above can also easily be

extended to more than two integers. Given a list of (say, positive)

integers. one searches for the smallest one, replaces all integers by

the remainder upon division by the smallest one, and then repeats

this step until all but one integer are zero. An implementation could

look like this.

Algorithm: Simultaneous computation of the gcd of

a list of positive integers

def my third gcd ( v ) :

v = [ a for a in v i f a != 0 ]

v . s o r t ( )

return v [ 0 ] i f 1 == len ( v ) else

my third gcd ( [ v [ 0 ] ] + [ a%v [ 0 ] for

a in v [ 1 : ] ] )

Sometimes one can improve this algorithm slightly by modifying

the Euclidean Division: instead of b = aq+r with 0 ≤ r < |a| one uses

the modified Euclidean Division b = aq′ + s with −|a|/2 < s ≤ |a|/2.

The careful reader might ask why we prefer the Euclidean al-

gorithm for computing the gcd over the usual one that everybody

performs in his head, namely using directly our definition of the gcd

via the prime factorization of the integers in question. Here, for ex-

ample 127 = 2 · 3 · 17 and 27 = 33, whence gcd(102, 27) = 3 as we

see immediately. This seems to be much shorter than the example

calculation using the Euclidean algorithm which we gave above.

The answer is that this factorizing and then applying the defining

formula for the gcd is, of course, the preferred method — for small
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numbers though! If numbers become bigger there is a deep problem

arising. Namely, we cannot factor too big numbers. There are many

ingenious algorithms for factoring, but none of them is capable to

surely factor an integer with a few thousand decimal digits. The most

naive algorithm would try to factor a positive integer n by trying to

find a divisor starting with 2, 3, etc. We can stop our search once we

reach b
√
nc since a composite number must obviously have at least

one divisor smaller or equal to
√
n. If the number would be, for

instance, a square of a prime we would have to perform indeed
√
n

many divisions before the factorization succeeds. Hence if n has 1000

decimal digits it could turn out that we have to try approximately√
101000 = 10500 divisions before success. This is an incredibly large

number as one learns if one asks a physicist. He would explain that

there are approximately 1011 stars in our milky way. Hence it is

much much faster to count the stars in our milky way than to factor

a number with 1000 digits using the described naive algorithm. In

fact, there are faster algorithms, but they are still all exponential

in the number of digits of the given candidate for factoring. The

conclusion is that we cannot be certain to compute the gcd of two

numbers with several thousand digits using factorization.

But Euclid’s algorithm can very well compute the gcd of two such

numbers. Indeed, if we apply the Euclidean algorithm to numbers

b > a > 0 then we expect that the remainder after the first division

is in the average a/2. We then have to apply Euclidean division to

numbers of the magnitude a, a/2, and we expect the remainder to be

in the average a/4. So then we have in the third division to apply

Euclidean division to numbers of the magnitude a/2, a/4, and we

expect the remainder to be around a/8 etc. So we expect that the

Euclidean algorithm terminates after log2 a steps. In other words the

number of divisions needed to compute the gcd of a, b is in the order

of the number of binary digits of a. If a has 1000 decimal digits we

would need approximately 1000 log2 10 ≈ 3, 300 Euclidean divisions,

which even the slowest smart phone would be able to perform the

in a few seconds. The heuristic arguments given here can indeed

be turned into a rigorous upper bound for the number of necessary

divisions, and it turns out that the bound is in fact in the order of

the number of binary digits of a.
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We shall see later that computing gcds of big integers is indeed of

practical interest, for example in cryptography based communication.

3. Congruences

3.1. Computing with congruences.

Definition. Let a, b,m ∈ Z. We call a congruent to b modulo m (as

formula: a ≡ b mod m or a ≡m b), if m | (a− b).

Remark. One has a ≡ b mod 0 if and only if a = b. Therefore, in the

following, the module m will often be a non-zero integer, which allows

to obtain identities modulo m which would not hold as identities

for integers. Moreover, obviously a ≡ b mod m if and only if a ≡
b mod −m. Hence, we do not loose any substantial part of theory

when assuming occasionally that the module is positive.

Theorem. For given m the relation ≡m is an equivalence relation.

We leave it to the reader to check for the given relation the ax-

ioms of an equivalence relation, namely that the relation is reflexive,

symmetric and transitive.

Definition. The set of equivalence classes of the relation ”congruent

modulo m” is denoted by Z/mZ.

Theorem. Assume m 6= 0. Then a ≡ b mod m if and only if a and

b leave the same remainder upon Euclidean Division by m.

Proof. Write a = mq + r and b = mq′ + r′ with integers q, q′ and

0 ≤ r, r′ < |m|. Then a− b = m(q − q′) + r− r′. From this it is clear

that if m divides a − b then it divides r − r′, and vice versa. But m

divides r − r′ if and only if r = r′ as follows from |r − r′| < |m|. �

Hence, for m 6= 0, every equivalence class of the equivalence

relation “congruent mod m” contains exactly one integer 0 ≤ r <

|m|. Therefore, we have as many equivalence classes as residues,

namely |m| many. Moreover, an integer is congruent mod m to a

given integer a if it is of the form a+mx, i.e. if it is contained in the

set

a+mZ :=
{
a+mx : x ∈ Z

}
.
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Vice versa every number in this set is equivalent to a mod m. In

particular, we have

a+mZ = r +mZ,
where r is the remainder (or residue) of a after division by m. The

equivalence classes of the relation “congruent mod m” are usually

called residue classes modulo m, and the class containing a given

integer a is called residue class mod m of a. We summarize:

Theorem. Assume m 6= 0.

(i) The equivalence classes in Z/mZ are of the form

a+mZ = {a+mx : x ∈ Z}.

Vice versa, every such set is an equivalence class modulo m.

(ii) One has Z/mZ = {r +mZ : 0 ≤ r < m}. The set Z/mZ is

in particular finite, one has card (Z/mZ) = |m|.

“Computing with congruences” is based on the following rules.

Theorem. Let m be an integer’ and assume that’ for given integers

a, a′, b and b′’ one has a ≡ a′ mod m and b ≡ b′ mod m. Then

(i) a+ b ≡ a′ + b′ mod m, and

(ii) ab ≡ a′b′ mod m.

Proof. By assumption we know that m divides a−a′ and b− b′. For

proving (i) we write

(a+ b)− (a′ + b′) = (a− a′) + (b− b′),

from which it is obvious that the left hand side is divisible by m.

For (ii) we have to be a bit more tricky, namely we write

ab− a′b′ = (a− a′)b+ a′(b− b′),

which again makes (ii) obvious. �

Example. We give an example for how to use the preceding rules.

The reader has probably seen already the following fact:

A given positive integer n is divisible by 9 if and

only if its digit sum4. is divisible by 9.

4By digit sum of n one means the sum of the digits of the decimal expansion of
n
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For example, 123456789 is divisible by 9 since 1+2+· · ·+9 = 45 is so.

For proving the given rule we note that 10 ≡ 1 mod 9. By (successive)

application of (ii) this gives 10 · 10 ≡ 1 mod 9, 10 · 10 · 10 ≡ 1 mod 9

and so forth. If zl, zl−1, . . . , z0 are the decimal digits of n, then

n = zl · 10l + zl−1 · 10l−1 + · · ·+ z1 · 10 + z0.

By (successive) application of (i) and (ii) we can replace here modulo 9

all powers of 10 by 1, i.e.

n ≡ zl + zl−1 + · · ·+ z1 + z0 mod 9.

The given rule is now obvious. Note that we have actually proved

more, namely that a number leaves the same remainder upon Eu-

clidean division by 9 as its digit sum.

We encourage the reader to work out similar division rules for

division by 3, 11, 2, 4, 8, 5, 25.

We saw that we can work with congruences like with identities:

We can replace in congruences modulo m left hand sides of another

congruence mod m by its right hand side, we can multiply or add

respective side of congruences modulo m so to obtain another con-

gruence modulo m. However, the cancellation law does not hold true

in general, i.e. from a given congruence ka ≡ kb mod m we can in gen-

eral not deduce a ≡ b mod m. For example, we have 2 ≡ −2 mod 4, �

whereas 1 6≡ −1 mod 4. The following theorem shows that under a

certain assumption we can still apply cancellation.

Theorem. Assume gcd(k,m) = 1. Then ka ≡ kb mod m implies

a ≡ b mod m.

Proof. By assumption and Bézout’s Theorem there exist integers x

and y such that kx+my = 1. We have to show that m divides a− b,
and we know that m divides k(a− b). For this we write

a− b = 1 · (a− b) = (kx+my)(a− b) = kx(a− b) +my(a− b).

Since the right hand side is divisible by m, the claim follows. �

A residue class modulo m is called primitive if its members are

relatively prime tom. Note that we only have to check for one member
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that it is relatively prime to m to be certain that this holds true for

all. We note an important special case of the preceding theorem:

Corollary. Let p be a prime number. Then ka = kb mod p implies

a = b mod p, provided k 6≡ 0 mod p.

This rule resembles very much that fact that we may divide both

sides of an identity for, say, rational or real numbers by a nonzero

number. The deeper reason for this is revealed in algebra, where one

learns that the set Z/pZ of residue classes modulo a prime p form a

field.

The preceding theorem can also be obtained as a consequence of

the following stronger statement.

Theorem. For given integers m and k there exists an integer k′ such

that kk′ ≡ 1 mod m if and only if gcd(k,m) = 1.

Proof. Assume kk′ ≡ 1 mod m for some integer k′. This means that

kk′ = 1 + my for suitable k′ and y, which implies that k and m

are relatively prime. Vice versa, if gcd(k,m) = 1 then by Bézout’s

Theorem 1 = kx+my for suitable x and y, and so, kx ≡ 1 mod m. �

Again we have as special case:

Corollary. Let p be a prime number. Then, for every integer k which

is not divisible by p, there exists an integer k′ such that kk′ ≡ 1 mod p.

It is often necessary to calculate an inverse of an integer modulo

a given m. For small m the easiest way is to try. For example, if

we want to invert 2 modulo 5, we use that there are only 4 primitive

residue classes modulo 5. Thea are represented by the possible non-

zero residues modulo 5, i.e. by 1, 2, 3 and 4. Hence we multiply 2 by

each of these until the result equals 1 modulo 5. We leave it to the

reader to find the inverse of 2 mod 5 in this way. For larger modules

m trying will not be possible. However, as we saw in the last proof

computing the inverse modulo m of an integer amounts essentially to

solve Bézout’s equation kx + my = 1, which in turn is done by the

extended Euclidean Algorithm. amounts essentially to
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Algorithm: Computation of the inverse modulo m

def inv ( k , m) :

x , y = my Bezout ( k ,m) # see

preced ing s e c t i o n

return x

There are obvious other rules for computing with congruences

whose discovery and proof we leave to the reader (he will stumble

over them once he starts to compute with congruences by himself).

However, we mention the following. If a ≡ b mod m, then, for every

integer k, we have ak ≡ bk mod mk. And vice versa, if ka ≡ kb mod

m, k divides m and k 6= 0, then a ≡ b mod m/k.

3.2. The Chinese remainder theorem.

Theorem (Chinese Remainder Theorem). Let m1, . . . ,mr be pair-

wise relatively prime positive integers. Let a1, . . . , ar ∈ Z. Then

there is a solution x of the simultaneous congruences

x = aj mod mj (1 ≤ j ≤ r).

Such a solution is modulo m := m1 · · ·mr unique (i.e. if x′ is

another solution; then x ≡ x′ mod m.

This theorem was indeed as far as one knows first written up

in ancient China several thousand years ago. This is not surprising

since the theorem, and in particular its proof, is of quite practical

interest. Think of periodically recurring events (like star or planet

constellations) which occur every m1, m2, . . . years, respectively. If

the first event occurred in year a1, the second in year a2, . . . , is

then there a year where all occur at the same time? The Chinese

Remainder Theorem gives an affirmative answer if the periods are

pairwise relatively prime. And what is the closest year in the future

when all events do occur at the same time. Again, the proof of the

Chinese Remainder Theorem will show how to compute this year.
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Proof of the Chinese Remainder Theorem. For finding an in-

teger x as in the theorem we set up a table as follows:

a1 m1 m/m1 m′1 a1(m/m1)m′1
a2 m2 m/m2 m′2 a2(m/m2)m′2
...

...
...

ar mr m/mr m′r ar(m/mr)m
′
r

We let x be the sum of the entries of the last column, i.e. we set

x := a1(m/m1) ·m′1 + a2(m/m2) ·m′2 + · · ·+ ar(m/mr) ·m′r.

Herem′j is an inverse modulomj ofm/mj , respectively, i.e. as solution

of m′j · m/mj ≡ 1 mod mj . Note that such m′j exist since mj and

m/mj are relatively prime by assumption. We also know how to

compute m′j effectively as we learned in the last section. We leave it to

the reader to verify that the so constructed x satisfies x ≡ a1 mod m1,

x ≡ a2 mod m2 etc..

The uniqueness is easy to see: if x′ is another solution, then

x ≡ x′ mod mj for all j. Therefore x-x’ is divisible by all mj , and

since the mj are pairwise relatively prime, we conclude that x − x′
must be divisible by the product of all mj . �

Following the procedure described in the proof it is easy to let a

computer find an x as in the theorem.

Algorithm: Solving simultaneous congruences

def prod ( l s t ) :

”””

Return the product o f the o b j e c t s in

the l i s t l s t .

”””

pr = 1

for x in l s t :

pr ∗= x

return pr
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def my Chinese ( d) :

”””

Return the s m a l l e s t p o s i t i v e

s imul taneous s o l u t i o n x

to the congruences

x = d [ n ] mod n

where n runs through the keys o f the

d i c t i o n a r y d .

The keys must be p a i r w i s e r e l a t i v e l y

prime .

”””

m = prod ( d . keys ( ) )

t a b l e = [ ( m/n , inv (m/n , n) , d [ n ] ) for n

in d ]

x = sum( [ a∗b∗c for a , b , c in t a b l e ] )

return tab le ,m, x , x%m

d = {3 : 2 , 5 : 4 , 7 :6}
my Chinese (d)

We note a theoretical consequence which is extremely important

for solving congruences and for counting the solutions modulo m of a

given congruence modulo m.

Let f(x1, . . . , xs) be a polynomial in s variables with integral

coefficients, and let m > 0 be an integer. Assume that for each prime

power pα ‖ m5 we have a solution ~xp ∈ Zs of the congruence

f(~xp) ≡ 0 mod pα.

By the Chinese Remainder Theorem there exists an ~x ∈ Zr, such

that for every prime power pα ‖ m we have ~x ≡ ~xp mod pα. (These

congruences are to be read and solved component by component.)

5We write t ‖ m and call t an exact divisor of m, if t is a divisor of m such that
gcd(t,m/t) = 1.
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For such an x we than have also

f(~x) ≡ 0 mod m.

Moreover, every solution ~x of the preceding congruence is obtained in

such a way.

If we set

a(m) := card
{

(x1, . . . , xr) ∈ Z :

0 ≤ x1, . . . , xr < m, f(x1, . . . , xr) ≡ 0 mod m
}
,

then the considerations of the last paragraph show

a(m) =
∏
pα‖m

a(pα).

This formula has to be understood in the sense that the pα run over

all prime powers exactly dividing m.

It is sometimes useful to rewrite the Chinese Remainder Theorem

in terms of maps. For this we define the reduction map from Z/mZ
to Z/nZ for divisors n|m as the map

redm,n : Z/mZ −→ Z/nZ, a+mZ 7→ a+ nZ.

The reader should verify that this map is well-defined. This

means the following: If we take another element b in C := a + mZ,

then a+mZ = b+mZ. Therefore, we have suddenly two definitions for

redm,n(C), namely a+nZ and b+nZ, and our definition make sense

only if these two expressions define the same residue class modulo n.

Using the reduction map the Chinese Remainder Theorem can

be restated as follows:

Theorem (Chinese Remainder Theorem, map theoretical formula-

tion). Let m1, . . . , mr be pairwise relatively prime positive integers,

and set m = m1 · · ·mr. The map

redm,m1
× · · · × redm,mr : Z/mZ −→ Z/m1Z× · · · × Z/mrZ

a+mZ 7→ (a+m1Z, . . . , a+mrZ).

is bijective.
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Indeed, the first part of the classical formulation of the Chinese

Remainder Theorem says that our map is surjective, whereas the

second part says it is injective.

3.3. Algebraic congruences mod pn. As we saw in the discus-

sion succeeding the Chinese remainder theorem in Section 3.2, given

a polynomial f(x1, . . . , xs) in s variables with integral coefficients,

any congruence f(x1, . . . , xs) ≡ 0 mod m can be reduced to the cor-

responding congruences modulo the prime powers pn exactly divid-

ing m. However, a congruence modulo a prime power pn can often

be reduced to the congruence modulo p. The advantage lies at hand.

For finding a solution

f(x1, . . . , xs) ≡ 0 mod p

there is in general no better method than trying systematically all

possible elements of (Fp)s for being a solution. If p and s are suf-

ficiently small such a search can be done, whereas a corresponding

search modulo p2 would already square the amount of trials. The

mentioned method of reduction is an adaption of Newton’s method

for finding real roots of a polynomial in one variable. It is explained

in the proof of the following theorem.

Theorem (Newton’s method). Let f be a polynomial in s variables

with integral coefficients, and pn (n ≥ 1) a prime power. Assume

f(x1, . . . , xs) ≡ 0 mod pn, ∇f(x1, . . . , xs) 6≡ 0 mod p.

Then there exists a solution

f(y1, . . . , ys) ≡ 0 mod pn+1 with y1, . . . , ys ≡ x1, . . . , xs mod pn.

Here ∇f is the vector of length s whose jth entry is the partial

derivative of f with respect to the jth variable.

Proof of the theorem. Write ~y for (y1, . . . , ys) and similar for the

vector of the xj . For the desired solution ~y ≡ ~x mod pn we make the

ansatz

~y = ~x+ pn~t

with a vector ~t so that we have to solve

f(~x+ pn~t) ≡ 0 mod pn+1.
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Here ~y = (y1, . . . , ys) and ~x = (x1, . . . , xs).

We expand f around ~x and observe that all higher terms apart

from the constant and linear ones vanish modulo pn+1:

f(~x+ pn~t) ≡ f(~x) + pn∇f(~x) · ~t mod pn+1,

where the dot on the right is the usual scalar product of row vectors.

The congruence of our ansatz becomes therefore

− 1

pn
f(~x) ≡ ∇f(~x) · ~t mod p.

But this congruence is solvable in ~t since we assumed that ∇f(~x) is

not zero modulo p. Note that the solutions ~t form an affine subspace

of Fsp of co-dimension 1. In particular, ~t is unique if s = 1. �

As we saw in the proof the case s = 1 is especially interesting.

Corollary. Let f be a polynomial in one variable with integral co-

efficients, and p a prime number. Assume f(y1) ≡ 0 mod p and

f ′(y1) 6≡ 0 mod p Then, for any n, there exists exactly one solution

yn modulo pn of f(yn) ≡ 0 mod pn with yn ≡ y1 mod p.

From the uniqueness we deduce yn+1 ≡ yn mod pn. If we set

yn+1 = yn + tnp
n, and t0 = y1, then yn+1 =

∑n
ν=0 tνp

ν . Note that

we can assume that the yn have been chosen so that 0 ≤ tν < p. The

sums look like the partial sums of a p-adic expansion of some object,

and it is natural to ask what object this might be. The interested

reader can find the answer in Section 4.2.

3.4. Primitive residue classes.

Definition. A residue class modulo m is called primitive if all its

elements are relatively prime to m. We denote the set of primitive

residue classes modulo m by (Z/mZ)∗.

Remark. The reader should verify that a residue class modulo m is

primitive if at least one of its elements is relatively prime to m.

Definition. Euler’s φ-function6 ϕ is defined on the set of positive

integers and its values are

ϕ(m) := card ((Z/mZ)∗) (m ≥ 1).

6Euler’s ϕ-function is sometimes also called Euler’s totient function
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In other words, since every residue class is represented by an

integer 0 ≤ r < m, we have

ϕ(m) = card
({

0 ≤ r < m : gcd(r,m) = 1
})
,

or, equivalently, that ϕ(m) equals the number of fractions 0 ≤ x < 1

whose denominator in shortest form is m.

Example. The first values of Euler’s phi-function are

m 1 2 3 4 5 6 7 8 9 10 11 12 24

ϕ(m) 1 1 2 2 4 2 6 4 6 4 10 4 8

The table suggests the following theorem:

Theorem. Let m1, . . . , mr be pairwise relatively prime positive in-

tegers, set m = m1 · · ·mr. Then ϕ(m) = ϕ(m1) · · ·ϕ(mr).

Proof. For this one checks that the map

redm,m1
× · · · × redm,mr

from the preceding section defines after restriction a bijection

(Z/mZ)∗ −→ (Z/m1Z)∗ × · · · × (Z/mrZ)∗.

From this the claimed formula is obvious. �

Lemma. For prime powers pα one has ϕ(pα) = pα − pα−1.

Proof. The primitive residue classes modulo pα are represented by

those numbers from the list 0, 1, . . . , pα−1 which are not divisible by p.

But there are exactly pα−1 numbers in the list which are divisible by

p, namely the numbers 0, p, 2p, 3p, · · · , (pα−1 − 1) · p. If we suppress

these from the list, exactly pα − pα−1 number remain. This proves

the lemma. �

The last theorem and the last lemma imply the following formula

for ϕ(m):

Theorem. For any positive integer m, one has the formula

ϕ(m) = m
∏
p|m

(
1− 1

p

)
.

Here p runs through the (pairwise different) prime divisors of m.
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Note that, for any m, we have ϕ(m) ≤ m − 1, with equality if

and only if m is a prime.

After having determined the number of primitive residue classes

modulo a given number m we study now a bit deeper the structure

provided by these classes. The first thing to remark is that the prod-

uct of two numbers which define a primitive residue class modulo m

does so too. We shall tacitly apply this in the following.

Theorem. Let m be a positive integer and a be an integer which is

relatively prime to m. There exist an n > 0 such an ≡ 1 mod m.

Proof. The powers ak, where k runs through the positive integers

cannot all be pairwise incongruent modulo m since there are at most

m residue classes. Therefore there exist integers positive k < l such

that ak ≡ al mod m. Choose an inverse a′ of a modulo m, and

multiply the last identity by a′
k
. It follows 1 ≡ al−k mod m. �

Definition. The smallest positive integer n such that an ≡ 1 mod n

is called the order of a modulo m.

Theorem. Let m be a positive integer, a relatively prime to m and

n be the order of a modulo m. Then

{ak +mZ : k ∈ Z≥0} = {ak +mZ : 0 ≤ k < n}.

This theorem is an immediate consequence of

Theorem. Let a and m > 0 be relatively prime integers, and let n

be the order of a modulo m. Then ak ≡ al mod m if and only if

k ≡ l mod n.

Proof. If k = l + nx then clearly ak ≡ al mod m. Assume the

latter congruence. Without loss of generality we may assume k < l.

Multiplying the congruence by a′
k

for an inverse a′ modulo m of a,

we obtain al−k ≡ 1 mod m. Let r be the remainder of l − k after

division by n. Again it follows ar ≡ 1 mod m. Since r < n and n

is the smallest positive integer such that an ≡ 1 mod m we deduce

r = 0, i.e. that n divides l − k. �
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Definition. Let m be a positive integer. An integer w is called

primitive root modulo m , if

{wn +mZ : n ∈ Z} = (Z/mZ)∗.

From the preceding theorem we deduce that a is a primitive root

modulo m if and only if the order of a modulo m equals ϕ(m). How-

ever, it is not at all clear whether a primitive root modulo m exists

at all.

Example. The number a := 10 is a primitive root modulo 7: 10 ≡7 3,

100 ≡7 2, 1000 ≡7 6, 10000 ≡7 4, 100000 ≡7 5, 1000000 ≡7 1,

Example. The reader should check that, for every odd number a, one

has a2 ≡ 1 mod 8. Therefore the order of an odd number modulo 8

is 1 or 2. But (Z/8Z)∗ has four elements. Therefore there exists no

primitive root modulo 8.

We shall come back to the question which m possess primitive

roots. However, for this and only because its interesting for its own

sake we study, first of all, the notion of “order modulo m”.

Theorem (Fermat’s Little Theorem). Let p be a prime. For every

integer x one has xp ≡ x mod p.

Proof. The claimed congruence is obviously correct if x is divisible

by p. So assume that p does not divide x. We have

xp−1

p−1∏
j=1

j =

p−1∏
j=1

(xj).

If we reduce both sides modulo p we observe that the product on the

right hand side is congruent modulo p to the product P :=
∏p−1
j=1 j

since the set of all numbers xj (1 ≤ j ≤ p − 1 represents also all

residue classes modulo p (indeed, if xj ≡ xj′ mod p then j ≡ j′ mod p

since x is not divisible by p). It follows xp−1P ≡ P mod p, and

since P is not divisible by p, then xp−1 ≡ 1 mod p, or equivalently

xp ≡ x mod p. �

As an immediate consequence one obtains the binomial theorem

modulo p.
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Corollary. For any two integers x, y, one has

(x+ y)p ≡ xp + yp mod p.

Note that, by the usual binomial theorem, the corollary is equiva-

lent to the statement that
(
p
k

)
is divisible by p for every 1 ≤ k ≤ p−1.

It is not hard, however, to prove this directly by using the formula(
p

k

)
=
p(p− 1) · · · (p− k + 1)

k!
,

and noting that k! is not divisible by p.

Fermat’s Little Theorem should not be confused with Fermat’s�

last Theorem, whose proof was a long outstanding problem in number

theory for several hundred years and which was finally proved 20 years

ago.

Theorem (Fermat’s Last Theorem). The equation an + bn = cn for

n > 2 does not possess any integral solutions with abc 6= 0.

Fermat’s Little Theorem generalizes to arbitrary modules. Note

that it implies that xp−1 ≡ 1 mod p if x is not divisible by p (in fact,

we used this in the proof). In this form it can be quickly generalized

to arbitrary modules m.

Theorem (Euler). Let x and m > 0 be relatively prime integers.

Then xϕ(m) ≡ 1 mod m.

Recall that φ(m) = m− 1 if m is a prime, in which case Euler’s

theorem becomes Fermat’s Little Theorem. The proof of Euler’s the-

orem is almost identical to the proof of Fermat’s Little Theorem, and

we leave the details as an exercise.

As immediate consequence we obtain:

Theorem. Let a and m > 0 be relatively prime integers. Then the

order of a modulo m divides ϕ(m).

Fermat’s Little Theorem implies a (probabilistic) primality test:

Given a positive integer m, check randomly chosen x which are rela-

tively prime to m whether they satisfy xm−1 ≡ 1 mod m. If some x

does not possess this test, then m cannot be a prime number. This
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primality test fails however for Carmichael numbers. These are com-

posite numbers m which satisfy xm−1 ≡ 1 mod m for all x relatively

to m. Such numbers do indeed exist. We leave it to the reader to

find the first Carmichael Number.

We come back to the question which modules m possess primitive

roots. We start with prime modules. Here the answer is easy.

Theorem. Every prime p possesses a primitive root modulo p.

For the proof we need two lemmas, which are interesting for its

own sake.

Lemma. Let p be a prime, and let an, . . . , a0 be integers not all di-

visible by p. The congruence

anx
n + an−1x

n−1 + · · ·+ a0 ≡ 0 mod p

possesses at most n solutions modulo p.

Proof. The left hand side of the congruence in question can be

viewed as a polynomial, which we denote by f(x). We proceed by

induction over n. If n = 0, then f(x) = a0, and since by assumption

a0 6≡ 0 mod p there is no solution. Suppose now that f is a polyno-

mial of degree ≤ n + 1 and f(x0) ≡ 0 mod p. We shall show that f

has at most n-many solutions modulo p which are different from x0.

For this, we write

f(x) ≡ f(x)− f(x0) mod p

≡
n+1∑
k=0

akx
k −

n+1∑
k=0

akx
k
0 mod p

≡
n+1∑
k=0

ak(xk − xk0) mod p.

using the formula

(xk − xk0) = (x− x0)(xk−1 + xk−2x0 + . . .+ xk−1
0 ),

we obtain

f(x) ≡ (x− x0)
[
a0 +

n+1∑
k=1

ak(xk−1 + xk−2x0 + . . .+ xk−1
0 )

]
mod p.



28 1. Basics

Denote the sum on the right by g(x). Then g(x) defines a polynomial

of degree ≤ n. If x1 6≡ x0 mod p and f(x1) ≡ 0 mod p, then clearly

g(x1) ≡ 0 mod p. However, by induction hypothesis the congruence

g(x) ≡ 0 mod p possesses at most n solutions modulo p. �

Lemma. One has ∑
d|m

ϕ(d) = m.

Here the sum is over all positive divisors d of m.

Proof. Consider the m fractions
0

m
,

1

m
,

2

m
, . . . ,

m− 1

m
.

The denominator of any of these fractions in shortest form is a divisor

d of m. The fractions in shortest form with denominator d are the

fractions k
d , where 0 ≤ k < d and gcd(k, d) = 1. There are exactly

ϕ(d) many such fractions. The claimed formula is now obvious. �

Proof of the theorem on primitve roots mod primes. We need

to show that there is a number w, not divisible by p, whose order mod-

ulo p equals p − 1. We know that the order of any a modulo p is a

divisor of p − 1. For a divisor d of p − 1 let A(d) denote the set of

numbers 1 ≤ a ≤ p − 1 whose order equals d. We shall show in a

moment

#A(d) ≤ ϕ(d).

But it is clear that
∑
d|p−1 #A(d) = p− 1 (since every 1 ≤ a ≤ p− 1

must occur in exactly one A(d)). On the other hand
∑
d|p−1 ϕ(d) =

p−1. Both identities are only possible if #A(d) = ϕ(d). In particular,

#A(p− 1) = ϕ(p− 1) > 0, which proves our theorem.

It remains to prove the claimed inequality. Assume that A(d) is

not empty and let a be an element of A(d). We then have{
ak + pZ : 1 ≤ k ≤ d

}
=
{
x+ pZ : xd ≡ 1 mod p

}
.

Indeed the set on the left has d elements (see theorem above), it is

obviously a subset of the set on the right, and by the first lemma above

the set on the right cannot have more than d elements (consider the

polynomials xd − 1). We conclude that A(d) is contained in the left

hand side, and it remains to count the powers ak whose order modulo
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p equals d. But if akt ≡ 1 mod p if and only if d divides kt, and

therefore the order of ak mod p equals d if and only if k is relatively

prime to d. The claimed inequality follows. �

In fact, more is true:

Theorem. For every odd prime p there exists an integer w which is

a primitive root modulo any power pα.

Remark. The proof will actually show more. Namely, if w is a

primitive root modulo p, then the order of w modulo p2 equals p− 1

or p(p− 1). In the second case w is a primitive root modulo any pα,

whereas in the first case w + p is is a primitive root modulo any pα.

Proof of the theorem. Let w be a primitive root modulo p. The

order n of w modulo p2 divides ϕ(p2) = p(p−1), and since in particu-

lar wn ≡ 1 mod p we see that p− 1 divides n. Therefore n = p(p− 1)

or p − 1. In the latter case (w + p)p−1 ≡ wp + (p − 1)wp−1p ≡
1 + (p− 1)wp−1p mod p2. Thus replacing w by w+ p if necessary we

can assume that w is a primitive root modulo p2. We claim that w is

a primitive root modulo all powers of p.

For this we show by induction over α that

wϕ(pα−1) = 1 + pα−1nα

with some number nα which is not divisible by p. By choice of w this

is true for α = 1 and α = 2. Assume it is true for some α ≥ 2. Then

wϕ(pα) = (1 + pα−1nα)p = 1 + pαnα +

(
p

2

)
p2α−2n2

α + · · · .

But the third, fourth term etc. on the right is divisible by pα+1 since,

for t ≥ 3, we have α+1 ≤ t(α−1) (as follows from α+1
α−1 = 1+ 2

α−1 ≤ 3

for α ≥ 2), and since α ≤ 2α − 2 (for α ≥ 2) and p |
(
p
2

)
. (Note that

the latter is not true for p = 2). If we write the right hand side

as 1 + pαnα+1 we see that nα+1 ≡ nα mod p, i.e. that nα+1 is not

divisible by p.

The claim now follows easily. Namely, let n be the order of w

modulo pα. As before we have, first of all, that n divides ϕ(pα) =
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pα−1(p − 1), and that p − 1 divides n. Hence n = pu(p − 1) with

u ≤ α− 1. Since

wp
α−2(p−1) = wϕ(pα−1) = 1 + pα−1nα 6≡ 1 mod pα

it follows α− 2 < u, and therefore u = α− 1 as was to be shown. �

The preceding theorem is not true for powers of 2 as we saw in an

example above where we considered the module 8 which provides a

counter example. For powers of 2 one has instead the following whose

proof we leave to the ambitious reader.

Theorem. For every odd integer a and every power 2α there exists

an n ≥ 0 such that a ≡ ±5n mod 2α.

We finally can answer the question which positive integers m

possess primitive roots.

Theorem. A positive integer possesses a primitive root if and only

if it is of the form 2, 4, ps, or 2ps, where p is an odd prime and s a

positive integer.

Proof. It is obvious that 2 and 4 possess primitive roots, we proved

that ps possesses a primitive root, and any odd primitive root of ps

is one for 2ps.

Vice versa assume that m possesses a primitive root. Then the

order of w modulo m is ϕ(m). On the other hand side, by Euler’s

theorem wϕ(pn) ≡ 1 mod pn for every prime power pn relative prime

to w. From the Chinese remainder theorem we deduce that therefore

wN ≡ 1 mod m, where N denotes the least common multiple of all

ϕ(pn) (pn ‖ m). Since ϕ(m) is the product of all theses ϕ(pn) we

conclude N ≤ ϕ(m), and then (since ϕ(m) is the order of m) that

N = ϕ(m). But the latter implies that m contains at most one odd

prime power (since ϕ(pn) is even for any odd p), and if m contains an

odd prime power, then m cannot be divisble by 4 (since ϕ(4) = 2).

If m is a power of 2, then it equals m = 2 or m = 4 since 8 (and

accordingly any higher 2-power) possesses no primitive root. This

proves the theorem. �
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3.5. Sums of two squares.

Theorem (Wilson). For any prime p, one has (p− 1)! ≡ −1 mod p.

Proof. If k ∈ {1, . . . , p − 1}, then k is relatively prime to p, and

so possesses an inverse modulo p, which after reducing modulo p is

also contained in this set. We shall show in a moment that only the

elements 1 and p − 1 are their own inverses modulo p. Thus, the

elements 2, . . . , p−2 must split up into pairs {x, x−1}. It follows that

their product is 1. Hence,

(p− 1)! = 1 · (p− 1) ≡ −1 mod p.

It remains to prove that for 0 < k < p, we have that k2 ≡ 1 mod p

if and only if k = 1 or k = p − 1. If k = 1 or k = p − 1, then

k2 ≡ 1 mod p. Conversely, suppose that k2 ≡ 1 mod p. Then

p|k2 − 1 = (k − 1)(k + 1),

and since p is prime, p|k − 1 or p|k + 1. The only number in the set

{1, . . . , p − 1} which satisfies p|k − 1 is k = 1, and the only number

in {1, . . . , p− 1} which satisfies p|k + 1 is p− 1. �

Theorem. Let p be an odd prime. Then x2 ≡ −1 mod p is solvable

if and only if p ≡ 1 mod 4.

Proof. Let w denote a primitive root mod p. Recall that −1 ≡
w
p−1
2 mod p. Therefore if if p−1

2 is even then x = w
p−1
4 is a squareroot

of −1 modulo p. Vice versa, if x2 ≡ −1 mod p is solvable, say, with

x ≡ wn mod p, we conclude p−1
2 ≡ 2n mod p − 1, in particular, that

p−1
2 must be even. �

We remark that Wilson’s theorem gives us, for a prime number

p ≡ 1 mod 4, a closed formula for a solution of x2 ≡ −1 mod p,

namely x =
(
p−1

2

)
!. Indeed,(

p− 1

2

)
!2 ≡

 p−1
2∏
j=1

j

 p−1
2∏
j=1

(p− j)

 ≡ (p− 1)! ≡ −1 mod p.

We leave it to the reader to find out where we used here that p − 1

is divisible by 4. Note that this computation gives a second proof

of the fact that p ≡ 1 mod 4 implies the solubility of the congruence
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x2 ≡ −1 mod p. Algorithmically it is, however, for big p not wise

to compute a solution of x2 ≡ −1 mod p using this formula. If p is

big this affords (p − 1)/2 multiplications. It is better to proceed as

in the first proof, namely to compute w(p−1)/2 modulo p for some

primitive root modulo p. At the first glance this seems also to afford

(p − 1)/2 multiplications. But there is a little important trick to

reduce the computation of a power an to about log2 n steps. This is

best understood by an example: for computing a100 one proceeds as

follows.

b = (a2)2, c = ((b2)2)2, d = c2, a100 = d · c · b,

which makes 8 multiplications instead of 100. This method is some-

times called “divide and conquer”. we discuss it in more detail in the

section of remarks following this chapter.

Theorem (Thue). Let p be a prime. Then, for every r not divisible

by p there exist numbers 0 < a, b <
√
p such that b ≡ ±ra mod p.

More generally, given integers m > 0 and 0 < A,B ≤ m, AB > m,

then, for any r which is relatively prime to m there exist integers

0 < a < A, 0 < b < B such that b ≡ ±ra mod m.

Proof. Consider the application which associates to each pair of in-

tegers (k, l) with 0 ≤ k < A, 0 ≤ l < B the residue class modulo m of

kr+ l. Since there are AB > m such pairs but only m residue classes

modulo m, we conclude that there are two pairs (k, l) 6= (k′, l′) such

that

kr + l ≡ k′r + l′ mod m.

Setting a = |k − k′| and b = |l − l′| we find b ≡ ±ar mod m. It is

clear that |l − l′| < B and |k − k′| < A. Furthermore either a 6= 0 or

b 6= 0 since (k, l) and (k′, l′) are different. But then also b respectively

a is different from 0. Namely, if b = 0 then m would divide ra, and

then also a (since r is relatively prime to m), which is only possible

for a = 0. Vice versa a = 0 would imply that m divides b, whence

b = 0. This proves Thue’s theorem for general m. The special case

for m = p follows on taking A = B = d√pe, so that AB > p. �

As consequence of the two preceding theorems one obtains:
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Theorem. An odd prime p is a sum of two perfect squares if and

only if p ≡ 1 mod 4.

Proof. Indeed, assume p = x2 + y2 for two positive integers x and y.

Clearly, x and y are smaller than
√
p. In particular, they are not

divisible by p. But then we deduce from x2 ≡ −y2 mod p that

(xy′)2 ≡ −1 mod p, where y′ is an inverse mod p of y. From the

last but not least theorem we deduce p ≡ 1 mod 4.

Vice versa, if the latter is satisfied, we can solve r2 ≡ −1 mod p.

Choosing a and b for r as in Thue’s Theorem we have b2 ≡ −a2 mod p.

In other words p divides the number n := a2 + b2. But since a and b

are smaller than
√
p we have n < 2p. It follows n = p. �

The preceding theorem is an existence theorem, but it neither

tells us how to find a decomposition of a prime as sum of two squares

nor how many such decomposition’s there are. It is not too hard to

show that there is at most one solution 0 < x ≤ y of p = x2 + y2. For

small p ≡ 1 mod 4, for finding this solution, we can try all positive

integers x <
√
p until we find one such that p−x2 is a perfect square.

For large p this would not work since it needs to many steps. For this

case we have the subsequent theorem, whose proof, however, would

require methods from algebraic number theory and must therefore be

skipped.

Theorem (Cornacchia). Let be a prime, p ≡ 1 mod 4, and let x a

solution of x2 ≡ −1 mod p with p/2 < x < p. Denote by {rn} the

sequence of numbers such that r0 = p, r1 = x und rn = rn−2%rn−1
7

(n ≥ 2). Let l be the smallest index such that rl <
√
p. Then p − r2

l

is a perfect square.

Note that an x as in the theorem always exist and can also be

easily computed. Namly, choose a primitive root w mod p and com-

pute a positive x such that x ≡ w
p−1
4 mod p. Then x2 ≡ −1 mod 4.

If x < p/2 we replace x by p − x so that then p/2 < x < p. As

already explained above computing powers by even large exponents

is no problem. This leads then to the following algorithm.

7For two integers a and b 6= 0 we use a%b for the remainder of a after division
by b
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Algorithm: Find a representation of a given prime

p as sum of two perfect squares.

import math

def f i n d s q u a r e s ( p) :

”””

Return the s o l u t i o n ( x , y ) o f 0<x<=y of

p=xˆ2+yˆ2 i f i t e x i s t s ,

o t h e r w i s e throw an e x c e p t i o n . Input

must be prime p = +1 mod 4 .

EXAMPLE

>>> f i n d s q u a r e s (7829)

(50 , 73)

>>> f i n d s q u a r e s (100049)

(215 , 232)

>>> f i n d s q u a r e s (1000037)

(134 , 991)

”””

a s s e r t p%4 == 1 , ’ Error : %d must be a

prime = 1 mod 4 ’ % p

# Find a s o l u t i o n o f xˆ2=−1 mod p

# using Wilson ’ s theorem

x = 1

for j in range ( 2 , ( p−1)/2) :

x ∗= j

x = x%p

# Modify x i f necessary so t h a t p > x >

p/2

i f 2∗x < p :
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x = p − x

# compute r l as in the preced ing

theorem

a=p ; b=x

while b∗b > p :

r=a%b ; a=b ; b=r

a = int ( math . s q r t (p−b∗b) )

return ( a , b ) i f a < b else (b , a )

4. Remarks

We end this chapter by additional material for those readers with

some basic knowledge of abstract algebra.

4.1. Axiomatic characterization of the integers. In Section 1

we mentioned that it is not difficult to characterize the integers ax-

iomatically. In fact, this can be done as follows. Let R be an ordered

ring without zero-divisors. In other words, R is a set equipped with

two binary operations “+” and “·” which fulfill the axioms of a unitary

commutative ring without zero-divisors, and there exists a subset R≥0

of R which is closed under addition and multiplication, and which,

for any a 6= 0 in R, contains either a or −a. That R is unitary means

that there exists a multiplicative neutral element. This is unique and

henceforth denoted by 1R. One defines a ≤ b if b − a is in R≥0, and

this relation defines then a total order on R. The integers are an

example of such an ordered ring. However, there are also other exam-

ples, like for example the rational or real numbers. We assume now in

addition that every subset in R≥0 possesses a smallest element. We

can then prove:

Theorem. The induction axiom holds in R, i.e. R≥0 is the only

subset of R≥0 which contains 0 and with every element a also a+ 1R.
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Proof. Indeed, let A be such a subset. If A was different from R≥0

then B := R≥0 \ A possesses a smallest element a0. Clearly a0 > 0.

Furthermore a0 < 1 (since otherwise a0−1 would be in B). But there

are no elements 0 < b < 1 in R since for any such element b we would

have b2 < b (as follows from (1 − b)b ∈ R≥0 and (1 − b)b 6= 0 since

R does not have any divisors of zero), contradicting the fact that the

set of all 0 < b < 1 would posses a minimal element if non-empty.

Therefore B must be empty and A = R≥0. �

We can now prove that R is nothing else than the ring of integers,

up to a possible different naming of its elements. More precisely, we

shall prove the following theorem.

Theorem. There exists one and only one isomorphism of rings of Z
with R which maps Z≥0 onto R≥0.

Proof. Any isomorphism maps 1 to 1R, and then any integer n =

n · 1 to n · 1R (where, for negative n we mean by n · 1R the element

additive inverse of 1r added |n|-many times to itself). Let vice versa

f denote the map from Z to R which takes n to n · 1R. It is clear

from the definition that this f is a homomorphism of rings. Note

that 1R is in R≥0 (if −1R was in R≥0 then 1R = (−1R)(−1R) is in

R≥0, a contradiction. Therefore any n-fold sum of 1R is in R≥0. In

particular, f takes Z≥0 into R≥0. The map f is injective. If n ·1R = 0

and n ≥ 2, then −1R = (n− 1) · 1r is in R≥0, a contradiction.

Finally, f is surjective since its image contains 0 and with every

element a also a + 1, hence it contains R≥0, and then consequently

all of R. �

4.2. p-adic numbers. As we saw in the section on algebraic congru-

ences mod pn, given a polynomial f(x) in one variable with integer

coefficients and a number 0 ≤ t0 < p such that f(t0) ≡ 0 mod p

and f ′(t0) 6≡ 0 mod p, there exist one and only one sequence of num-

bers 0 ≤ tj < p such that yn+1 :=
∑n
ν=0 tνp

ν satisfies f(yn+1) ≡
0 mod pn+1 for all n ≥ 0. The yn+1 look like the partial sums of

some infinite p-adic expansion of some object, and we wondered what

this object might be.
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The answer to this can indeed be given. Namely, for a rational

number r set |r|p = p−s, where s is the unique integer such that p

does not occur in the factorization of r/ps. We also set |0|p = 0. The

function | · |p shares the same properties as the usual absolute value

| · |∞ on the set of rational numbers. Namely, we have |r|p = 0 if

and only if r = 1, we have |rs|p = |r|p · |s|p, and finally |r + s|p ≤
|r|p+ |s|p (in fact we even have even the stronger ultrametric property

|r + s|p ≤ max(|r|p, |s|p)). Using these properties one sees that the

Cauchy sequences Cp of rational numbers with respect to the valuation

|·|p form under term-wise addition and multiplication a ring, and that

the subset Np of rational sequences converging to zero with respect

to | · |p form a ideal in Cp. The quotient ring

Qp := Cp/Np

turns out to be a field, the field of p-adic numbers. The map which

associates to a rational number r the constant sequence with value r

defines an embedding of fields (so that one identifies Q with its image

under this embedding). The valuation | · |p can be uniquely extended

to all of Qp so that the three properties of a valuation (and the ul-

trametric property) are still satisfied. The field Qp is then complete

with respect to | · |p, i.e. every Cauchy sequence of Qp converges. The

field Q is dense in Qp. One sets

Zp :=
{
x ∈ Qp : |x|p ≤ 1

}
.

Using the ultrametric property it is easy to verify that Zp is a ring,

the ring of integers of Qp. Note that Zp contains the ring Z.

Coming back to our sequence of the yn the congruences ym ≡
yn mod pn translate into |ym − yn|p ≤ p−n, and hence our sequence

is a Cauchy sequence and converges, say, towards y. In other words,

y = lim
n
yn+1 = lim

n

n∑
ν=0

tνp
ν ,

and as in real analysis it is common in p-adic analysis too to denote

this limit by
∑∞
ν=0 tνp

ν . Moreover, f(yn) ≡ 0 mod pn translates to

|f(yn)|p ≤ p−n, i.e. f(yn) converges to 0. Finally, it is not hard to

show that polynomials are continuous functions (with respect to |·|p),
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so that

f(y) = f(lim
n
yn) = lim

n
f(yn) = 0.

We can therefore state:

Theorem. Let f be a polynomial in one variable with integral co-

efficients, and p a prime number. Assume f(x) ≡ 0 mod p and

f ′(x) 6≡ 0 mod p Then there exists exactly one solution y in Zp of

f(y) = 0 with |y − x|p < 1.



Chapter 2

Higher Methods

5. Quadratic reciprocity

Given a positive integer m we want to solve quadratic congruences

ax2 + bx+ c ≡ 0 mod m.

We assume a 6= 0 so that this congruence is not linear. Multiply-

ing this equation by 4a and completing the square we see that it is

equivalent to

(2ax+ b)2 ≡ b2 − 4ac mod 4am

The quantity

D := b2 − 4ac

is called the discriminant of the quadratic polynomial ax2 + bx + c.

Recall from real analysis that the equation ax2 + bx + c = 0 has

no solution, one or two different solutions according as D is a non-

square, zero or a non-zero square in R, respectively. (Note that D

is a non-zero square in R if and only if it is strictly positive). The

second form of our equation shows that the role of the discriminant

is similar on the level of congruences. More precisely, our problem

splits up into two sub-problems: First of all, study the congruence

y2 ≡ D mod 4am and then for any given solution y determine the

set of integers modulo m such that 2ax + b ≡ y mod 2am. (As an

exercise the reader might verify that, for any positive integer n, the

39
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congruence y ≡ z mod 2n implies y2 ≡ z2 mod 4n.) Since we know

already how to solve linear equations, i.e. how to approach the second

problem, we concentrate in this section on the first one.

Definition. An integer a is called quadratic residue modulo m, if the

congruence x2 ≡ a mod m is solvable. A primitive quadratic residue

modulo m is a quadratic residue modulo m which is relatively prime

to m.

As a consequence of the Chinese Remainder Theorem, it suffices

to consider the case that m is a prime power pn. For simplicity we

shall confine to odd prime powers pn and to integers a which are not�

divisible by p. In this case it suffices even to study the case that m

is a prime as we learn from the following theorem.

Theorem. Let pn be an odd prime power and a an integer which is

not divisible by p. Then a is a quadratic residue modulo pn if and

only if it is a quadratic residue modulo p.

Proof. Indeed let w be a primitive root modulo pn. We claim that

the quadratic residues modulo pn among the powers of w are those

which are even powers of w. Indeed every even power w2k equals

(wk)2 and is thus even a square of an integer. Vice versa if wk ≡
x2 mod pn, then x is also relatively prime to p and thus x ≡ wl mod

pn for some integer l. It follows wk ≡ w2l mod pn, and therefore

k ≡ 2l mod pn−1(p− 1), which implies that k is even.

The claim is now obvious: If a is a square modulo p then it is

congruent modulo p to an even power of w (note that p is also a

primitive root modulo p) and then it must also congruent modulo pn

to an even power of w. �

Remark. For p = 2 the preceding theorem is in general not true.�

The reader is encouraged to verify the following statements: Let a be

odd. Then a is a quadratic residue modulo 2, it is a quadratic residue

modulo 4 if and only if a ≡ 1 mod 4, and for n ≥ 3 the number a is

a quadratic residue modulo 2α if and only if a ≡ 1 mod 8.

We shall develop now a powerful criterion to decide whether a

given integer a is a quadratic residue modulo a given odd prime p.
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Definition (Legendre-Symbol). For any odd prime p and any integer

a set

(
a

p

)
:=


1 if x2 ≡ a mod p is solvable and gcd(a, p) = 1,

0 if p | a,

−1 otherwise.

Theorem. Let p be an odd prime number.

(1) If a ≡ a′ mod p, then we have
(
a
p

)
=
(
a′

p

)
.

(2) One has
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(3)
(

1
p

)
= 1 and, for all a which are relatively prime to p, one

has
(
a2

p

)
= 1.

(4)
(
−1
p

)
= (−1)(p−1)/2.

(5) If w is a primitive root modulo p, one has
(
wν

p

)
= (−1)ν

for all non-negative integers ν.

Proof. (1) and (3) are immediate from the definition of the Legendre

symbol. (2) follows from (5). Indeed, we can write a ≡ wν mod p and

b ≡ wµ mod p, so that ab ≡ wµ+ν mod p. Therefore(
a

p

)(
b

p

)
= (−1)ν(−1)µ = (−1)ν+µ =

(
ab

p

)
.

(4) is also a consequence of (5). For this note that by Fermat’s little

theorem we have wp−1 ≡ 1 mod p. But then w
p−1
2 is a solution of x2 ≡

1 mod p, and we know that there are only two solutions modulo p,

namely +1 and −1. Therefore w
p−1
2 ≡ −1 mod p or w

p−1
2 ≡ +1 mod

p. The latter is impossible since w is a primitive root. Hence w
p−1
2 ≡

−1 mod p, and so by (5)
(
−1
p

)
= (−1)

p−1
2 .

Finally, for proving (5) we have to prove that ν is even if and

only if wν ≡ x2 mod p is solvable. If ν is even then wν ≡ wν/2 mod p.

Suppose vice versa that wν ≡ x2 mod p for a suitable x. We write

x ≡ wµ mod p. It follows wν ≡ w2µ mod p. Therefore ν ≡ 2µ mod 2,

as was to be proven. �
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Definition. A Dirichlet character modulo m is a homomorphism

of groups1 χ : (Z/mZ)∗ → C∗ (i.e. a map which satisfies χ(ab) =

χ(a)χ(b) for all a, b ∈ (Z/mZ)∗).

Remark. Let χ be a Dirichlet character modulo m. (1) One has

χ(1) = 1. (2) The values of χ are always φ(m)th roots of unity. In

particular, a real Dirichlet character (i.e. a Dirichlet character which

assumes only real values) takes on only the values ±1. (3) We can

associate to χ the map χ̃ : Z→ C which is defined as

χ̃(x) =

{
χ(x+mZ) falls gcd(x,m) = 1,

0 sonst.

This map has the properties that

(i) χ̃(x+m) = χ̃(x),

(ii) χ̃(x) = 0 if and only if gcd(x,m) 6= 1,

(iii) χ̃(xy) = χ̃(x) χ̃(y) for all integers x and y.

By abuse of language, one calls, as we also shall do, a map χ̃ : Z→ C
satisfying (i) to (iii) a Dirichlet character modulo m. This is justified

by the fact that vice versa a map χ̃ satisfying (i) to (iii) gives rise

to a Dirichlet character χ via χ(x + mZ) := χ̃(x). We leave it to

the reader to verify that this is well-defined and defines a Dirichlet

character on the sense of the given definition.

Corollary. The map

(Z/pZ)∗ → {±1}, a+ pZ→
(
a

p

)
is well-defined ad defines a Dirichlet character modulo p.

Another important consequence is a follows.

Corollary. Let w be a primitive root modulo p. Then the set {1 =

w0, w2, w4, ..., wp−1} provides a complete set of representatives for the

primitive quadratic residues modulo p. In particular there are exactly
p−1

2 primitive quadratic residues and the same number of prmitive

quadratic non-residues modulo p.

1A homomorphism of groups f : G→ H between groups G and H, is a map such
that f(ab) = f(a)f(b) for all a, b ∈ G.
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Theorem (Euler’s criterion). For all integers a which are not divis-

ible by p, one has (
a

p

)
≡ a

p−1
2 mod p.

Proof. This follows from (5) of the last Theorem. Namely, let a ≡
wν mod p, where w is a primitive root modulo p. Then(

a

p

)
=

(
wν

p

)
= (−1)ν ≡ w

p−1
2 ν ≡ a

p−1
2 mod p,

where we use again w
p−1
2 ≡ −1 mod p (see the proof of the last the-

orem). �

Theorem (Gauss’ criterion). Let a be relatively prime to p. Let n

denote the number of 0 < j < p
2 such that aj ≡ −j′ mod p for some

0 < j′ < p
2 . Then one has (

a

p

)
= (−1)n.

Proof. Note that the numbers j and −j, where 0 < j < p
2 , provide a

system of representatives for the primitive residue classes modulo p.

Moreover the map x+pZ 7→ ax+pZ defines a permutation of the set

of primitive residue classes modulo p. Therefore, for every 0 < j < p
2

there exists a 0 < j′ < p
2 and an εj in {±1} such that aj ≡ εjj′ mod p.

After these preparations we have

a
p−1
2

∏
j

j ≡
∏
j

aj ≡
∏
j

εjj
′ =

∏
j

εj
∏
j

j′ mod p,

where the products runs over all 0 < j < p
2 , respectively. But

∏
j εj =

(−1)n and
∏
j j
′ =

∏
j j, since j 7→ j′ defines a permutation of the set

0 < j < p
2 . It follows a

p−1
2 ≡ (−1)n, and hence, by Euler’s criterion,(

a
p

)
= (−1)n, which was to be proven. �

Recall that we proved the following fact:

The number −1 is a quadratic residue modulo p if

and only if p is quadratic residue modulo 4.
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(Indeed, this is nothing else but a paraphrase of part (4) of the the-

orem immediatly following the definition of the Legendre symbol.)

Gauss’ criterion provides a mean to obtain statements like this for

residue classes different from −1 too. Such rules are called reciprocity

laws. We shall state the most general reciprocity law below. However,

it is worthwhile to deduce special cases directly from Gauss’ criterion.

For this, we formulate Gauss’ criterion slightly differently. As-

sume that a is positive and not divisible by p. Fix a 0 < j < p
2 . Then

aj− kp is in the interval (−p2 , 0) for a suitable integer k if and only if

j is in ( 2k−1
2a p, 2k

2ap) for some 1 ≤ k ≤ ba2 c. Applying Gauss’ criterion

we therefore obtain

Corollary. For any positive integer a not divisible by p, one has(
a

p

)
= (−1)

∑b a
2
c

k=1 #(
(2k−1)p

2a , 2kp2a )∩Z.

As a consequence one obtains the following reciprocity law.

Theorem. One has
(

2
p

)
= (−1)

p2−1
8 .

Proof. According to the formula of the last theorem we have
(

2
p

)
=

(−1)N , where N denotes the number of integers in the interval (p4 ,
p
2 ).

We have to consider 4 cases: p ≡ 1, 3, 5, 7 mod 8, and show that(
2
p

)
= 1 exactly in the first and last case.

Suppose that p = 8k + 1. Then (p4 ,
p
2 ) = (2k + 1

4 , 4k + 1
2 ), and

therefore (p4 ,
p
2 )∩Z = {2k+ 1, 2k+ 2, . . . , 4k}, and so indeed N = 2k,(

2
p

)
= +1.

Suppose that p = 8k + 3. Then (p4 ,
p
2 ) = (2k + 3

4 , 4k + 3
2 ), and

therefore (p4 ,
p
2 )∩Z = {2k+ 1, 2k+ 2, . . . , 4k+ 1}, and so N = 2k+ 1,(

2
p

)
= −1.

Similarly, if p = 8k + 5, then (p4 ,
p
2 ) = (2k + 5

4 , 4k + 5
2 ), and

therefore (p4 ,
p
2 ) ∩ Z = {2k + 2, 2k + 2, . . . , 4k + 2}, N = 2k + 1,(

2
p

)
= −1.

Finally, if p = 8k+7, then (p4 ,
p
2 ) = (2k+ 7

4 , 4k+ 7
2 ), and therefore

(p4 ,
p
2 )∩Z = {2k+ 2, 2k+ 2, . . . , 4k+ 3}, N = 2k+ 2,

(
2
p

)
= +1. �
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Example. In a similar way as the preceding theorem the reader

should try to prove for any prime p ≥ 5:(
3

p

)
=
(p

3

)
(−1)

p−1
2 .

We finally prove the general reciprocity law for two odd prime

numbers. For this we note, first of all, another consequence of Gauss’

criterion.

Theorem. Let a be an odd integer not divisible by p. Then one has(
a

p

)
= (−1)

∑ p−1
2

j=1 b
aj
p c.

Proof. With the notations as in the proof of Gauss’ criterion we have

for 0 < j < p
2

aj = p

⌊
aj

p

⌋
+ j′ if εj = +1,

aj = p

⌊
aj

p

⌋
+ p− j′ if εj = −1.

It follows

a
∑
j

j = p
∑
j

⌊
aj

p

⌋
+ pn+

∑
j

εj j,

the sums being over all 0 < j < p
2 . If a is odd this identity, taken

modulo 2, shows that
∑
j

⌊
aj
p

⌋
and n have the same parity. The

theorem follows now from Gauss’ criterion. �

Remark. The last theorem can also be formulated slightly differ-

ently, which will be useful in a moment. For this note that, for a

given 0 < x < p
2 , the quantity

⌊
ax
p

⌋
equals the number of integers

y such that 0 < y < a
px. Hence the sum in the preceding theorem

equals the number of elements in

∆ :=

{
(x, y) ∈ Z2 : 0 < x <

p

2
, 0 < y <

a

p
x

}
.

The preceding theorem reads then(
a

p

)
= (−1)#∆.
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We can finally prove the famous

Theorem (Quadratic Reciprocity Law). For any pair p, q of different

odd primes, one has (
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 .

Proof. According to the last remark we have(
p

q

)
= (−1)#∆1 ,

(
q

p

)
= (−1)#∆2 ,

where

∆1 =

{
(x, y) ∈ Z2 : 0 < x <

p

2
, 0 < y <

q

p
x

}
∆2 =

{
(x, y) ∈ Z2 : 0 < x <

q

2
, 0 < y <

p

q
x

}
.

If we reflect the set ∆2 at the line y = x, i.e. if we apply the map

(x, y) 7→ (y, x), then it becomes

∆′2 =

{
(x, y) ∈ Z2 : 0 < y <

q

2
, 0 < x <

p

q
y

}
,

which also can be written as

∆′2 =

{
(x, y) ∈ Z2 : 0 < x <

p

2
, 0 <

q

p
x < y <

q

2

}
.

But ∆1 ∪∆′2 equals the set of points (x, y) with integer coordinates

in (0, p2 )× (0, q2 ). The cardinality of this set is p−1
2

q−1
2 , and we notice

the quadratic reciprocity law as stated. �

Sometimes it is better to unravel the information encoded by the

right hand side of the the reciprocity law by saying

One has
(
p
q

)
=
(
q
p

)
unless p ≡ q ≡ 3 mod 4, when

one has
(
q
p

)
= −

(
p
q

)
.

We discuss a few applications of the quadratic reciprocity law. A

typical one is the answer to the question for which primes p would a

given quadratic equation have solutions modulo p.



5. Quadratic reciprocity 47

Figure 1. Proof of quadratic reciprocity: By Gauss’ criterion

we have
(
p
q

)
= (−1)card(∆1) and

(
q
p

)
= (−1)card(∆2), where

∆1 and ∆2 are the sets of blue points below respectively above
the red line y = q

p
x. Obviously, card (∆1) + card (∆2) =

p−1
2

· q−1
2

.

Example. The equation

x2 + x− 1 ≡ 0 mod p

has discriminant 5. Hence, for p 6= 2, 5 it is solvable if
(

5
p

)
= +1. But

by quadratic reciprocity
(

5
p

)
=
(
p
5

)
. The primitive quadratic residues

modulo 5 are 1, 22 ≡ −1 mod 5, 32 ≡ −1 mod 5 and 42 ≡ 1 mod 5

(in fact, we could have stopped the calculation after he first two steps

since we know that there are not more than two primitive quadratic

residues). Therefore, for p 6= 2, 5, the given quadratic congruence is

solvable if and only if p ≡ ±1 mod 5. A quick check shows that it is

not solvable for p = 2, and has the solution x = 2 for p = 5.

Example. Sometimes the quadratic residue symbol allows to pro-

duce nice formulas which are useful for further calculations. Such an
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example is

#{0 ≤ x < p : ax2 + bx+ c ≡ 0 mod p} = 1 +

(
D

p

)
,

where D = b2 − 4ac. Here a, b, c are given integers and p an odd

prime not dividing a. Indeed, the given congruence has no, one or

two solutions accordingly as
(
D
p

)
= −1, D ≡ 0 mod p or

(
D
p

)
= +1,

respectively.

For applying this formula we ask what the average number ν of

solutions of a quadratic congruence modulo p might be. There are

N := (p− 1)p2 such congruences (as we have p− 1 choices for a and

p choices for b and for c, respectively). The answer to our question is

then

ν =
1

N

∑
a,b,c mod p
a 6≡0 mod p

(
1 +

(
b2 − 4ac

p

))
.

But for fixed b and a the expression runs with c through all residues

modulo p (since a is not divisible by p). Hence

ν =
1

p

∑
D bmodp

(
1 +

(
D

p

))
,

where we used that (p−1)p/N = p. But as there are as many primitive

quadratic residues as quadratic non-residues we have
∑
D

(
D
p

)
= 0.

So we find ν = 1, i.e. the average number of zeros of a given quadratic

congruence is 1.

Example. As a last example we answer the question when the cubic

congruence x2 ≡ a mod p is solvable for every p. For this note that

the application x+ pZ 7→ x3 + pZ defines a map c from (Z/p/Z)∗ to

(Z/pZ)∗. Our questions is when is c surjective (since x3 ≡ 0 mod p

has anyway always he solution x ≡ 0 mod p). This is the case if and

only if c is injective. But c is a group homomorphism and hence c

is injective if and only if the kernel of c is trivial, i.e.!if and only if

x3 ≡ 1 mod p has only the solution 1 modulo p. But x3 − 1 = (x2 +

x+1)(x−1) and hence c is injective if and only if x2 +x+1 ≡ 0 mod p

has no solution, which is equivalent to
(
−3
p

)
= −1 (as x2 + x+ 1 has

discriminant −3). Finally, by quadratic reciprocity
(
−3
p

)
=
(
p
3

)
(the



5. Quadratic reciprocity 49

reader should verify this). An so the correct answer is: x3 ≡ a mod p

is solvable for every a if and only if p ≡ −1 mod 3 or p = 3. Note that

we also proved that c is 3 to 1 if p ≡ 1 mod 3. All this can also be

proven by rewriting the equation x3 ≡ a mod p in terms of primitive

roots. The condition p ≡ −1 mod 3 means nothing else but that 3

does not divide the order p − 1 of a given primitive root modulo p.

We leave the details to the reader.

We finally turn to the question how to compute
(
a
p

)
for a given

integer a and a given odd prime p. Note that an effective algorithm

helps us to answers the question when x≡a mod p has a solution.

However, finding such a solution is a different question and has a

different answer, which we shall no pursue here. One possibility for

calculating
(
a
p

)
is Euler’s criterion, since computing powers can be

done roughly with log2 p multiplications as we saw in Section 3.5.

On the other hand the quadratic reciprocity law suggests that we

could proceed as in the Euclidean algorithm. Let r be the rest of

a modulo p, apply quadratic reciprocity, let r′ be the rest of p mod

r, apply quadratic reciprocity, reduce r modulo r′ etc. However,

the problem is that
(
a
p

)
is only defined for primes p. The idea to

decompose a into prime factors q, and apply quadratic reciprocity to

each
(
q
p

)
would destroy the efficiency of our planned algorithm since

factoring becomes impossible if a is big. Fortunately, our idea still

works since factoring, applying quadratic reciprocity leads to a result

which can be formulated without the factorization. In other words we

can generalize quadratic reciprocity, so to apply it (almost) without

any restrictions.

Definition (Generalized Legendre Symbol). We define, for an odd

positive integer b and any integer a,(a
b

)
=
∏
pβ ||b

(
a

p

)β
.

Theorem (Generalized Quadratic Reciprocity Law). Let a and b be

odd positive relatively prime integers. Then one has(a
b

)( b
a

)
= (−1)

a−1
2 ·

b−1
2 .
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For the proof we need the following

Lemma. The application

(Z/4Z)
∗×(Z/4Z)

∗ → {±1}, (a+4Z, b+4Z) 7→ 〈a|b〉 := (−1)
a−1
2 ·

b−1
2

is bilinear (i.e. it satisfies 〈aa′|b〉 = 〈a|b〉〈a′|b〉 and 〈a|bb′〉 = 〈a|b〉〈a|b′〉
for all a, a′, b and b′).

Remark. Note that the quadratic reciprocity law can be restated in

the form (
p

q

)
=

(
q

p

)
〉〈[p]|[q]〉,

where [x] = x+ 4Z.

Proof of the lemma. We prove 〈aa′|b〉 = 〈a|b〉〈a′|b〉. The linearity

in the second argument follows then since 〈a|b〉 = 〈b|a〉. The symbol

〈aa′|b〉 equals −1 if and only if aa′ ≡ −1 mod 4 and b ≡ −1 mod 4,

and aa′ ≡ −1 mod 4 if and only if exactly one of a or a′ is congruent

−1 modulo 4. Therefore 〈aa′|b〉 = −1 of and only if exactly one of

the factors 〈a|b〉 and 〈a′|b〉 equals −1, which is the claim. �

Proof of the theorem. Decompose a = p1 · · · pr and b = q1 · · · qs
into (not necessarily different) primes pi and qj . Note that by as-

sumption each pi is different from all qj . We then have(a
b

)
=
∏
i

(pi
b

)
=
∏
i

∏
j

(
pi
qj

)

=
∏
i

∏
j

(
qi
pj

)
〈pi|qj〉 = N

∏
i

∏
j

(
qi
pj

)
= N

(
b

a

)
where N =

∏
i

∏
j〈[pi]|[qj ]〉. Here, for the third identity we applied

the quadratic reciprocity law. Finally, by the lemma we have N =

〈[a]|[b]〉, which proves the theorem. �

For computing the generalized Legendre symbol using quadratic

reciprocity and the Euclidean algorithm it is useful to introduce the

2-adic Hilbert symbol. For non-zero integers a and b we set

(a, b)2 := (−1)
a′−1

2
b′−1

2 (−1)α
b′2−1

8 (−1)β
a′2−1

8 ,
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where a = 2αa′, and b = 2βb′ with integers α, β ≥ 0 and odd integers

a′ and b′. We leave it to the reader to verify that (a, b)2 is bilinear

(i.e. that (a1a2, b)2 = (a1, b)2(a2, b)2). Using the theorem about the

value of
(

2
p

)
the generalized quadratic reciprocity law now takes the

form (a
b

)
=

(
b

a′

)
(a, b)2

for any pair of positive integers a and b, where b is odd and a′ is the

odd part of a.

Using this form of quadratic reciprocity the algorithm for com-

puting
(
a
b

)
for positive odd b would now be as follows. First we

compute the 2-adic Hilbert symbol.

Algorithm: Computation of the 2-adic Hilbert sym-

bol

def h i l b e r t ( a , b ) :

”””

Return the 2−adic H i l b e r t symbol (a , b )

f o r i n t e g e r s a and b .

”””

a s s e r t a !=0 and b!=0 , ’ Error : (%d,%d) :

ze ro input . ’%(a , b)

s = 0

while a%2 == 0 : a /= 2 ; s += 1

t = 0

while b%2 == 0 : b /= 2 ; t += 1

s s = −1 i f s%2 == 1 and (b%8 == 3 or b

%8 == 5) else 1

t t = −1 i f t%2 == 1 and ( a%8 == 3 or a

%8 == 5) else 1

uu = −1 i f a%4 == 3 and b%4 == 3 else

+1

return s s ∗ t t ∗uu
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It is now easy to compute the Legendre symbol using recursion.

Algorithm: Computation of the generalized Legendre

symbol

def l e gendre ( a , b ) :

”””

Return the g e n e r a l i z e d Legendre symbol

f o r i n t e g e r s a and b , where b i s odd

and

p o s i t i v e .

”””

i f 1 == b : return 1

a = a%b

i f 0 == a : return 0

ap = a

while ap%2 == 0 :

ap /= 2

return h i l b e r t ( a , b ) ∗ l e gendre (b , ap )

6. Arithmetical functions

There are several functions f(n) depending on a non-negative inte-

ger n which occur naturally in number theory. Examples are the

number ϕ(n) of primitive residue classes modulo n, the sum d(n) of

the divisors of a number n, the number of primes dividing n (say,

including multiplicities) and the like. Many of these functions share

properties which are useful in various situations and which we shall

study in this section. Though an arithmetical function is usually a

map f : n 7→ f(n) which is somehow motivated by arithmetical con-

siderations it is useful to simply adopt the following definition.

Definition. An arithmetic function is a map f : Z≥1 → C.

Example. Examples of arithmetic functions are:
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(1) The Euler ϕ-function which associates to n the number ϕ(n)

of primitive residue classes modulo n,

(2) the divisor sum which associates to n the number d(n) of

divisors of n,

(3) and, more generally, for any given k, the function σk whose

values σk(n) equal the sum of the kth powers of the divisors

of n,

(4) the Liouville-function λ, where λ(n) = (−1)Ω(n) and Ω(n)

equals the number of prime factors of n, counted with mul-

tiplicities.

Several of these examples are obtained by summing a given sim-

ple function over the divisors of n. More formally, we call G the

summatory function of g if

G(n) =
∑
d|n

g(d).

In such an expression we always mean that d runs over the positive

divisors of n. In Table 1 the function in the row G is always the

summatory function of the one below in the row g.

G(n) d(n) σ(n) σk(n) n

g(n) 1 n nk ϕ(n)

Table 1. Summatory functions G(n) =
∑
d|n g(d)

Another observation is that the functions of all the above exam-

ples are multiplicative, which means that a given function f is not

identically 0 and

f(mn) = f(m) · f(n) for all m, n such that gcd(m,n) = 1.

We proved this already for Euler’s ϕ-function and it is not hard to ver-

ify this for the other examples. However we shall prove in a moment

a theorem which makes it easy to recognize this property. An f which

satisfies f(mn) = f(m) · f(n) for all m and n without any restriction

is called strongly multiplicative. The Liouville λ-function is obviously

strongly multiplicative. Note that a multiplicative function always



54 2. Higher Methods

satisfies f(1) = 1: indeed f(1) = f(1) f(1), and f(n) = f(1) f(n);

the latter implies that f(1) 6= 0 (since f must not be identically 0),

and the former then our claim. Also, for a multiplicative function one

has

f(n) =
∏
pν ||n

f(pν).

A already used before this writing means that the product is to be

taken over all maximal prime powers dividing n. Applying this to the

function σk gives for example

σk(n) =
∏
pν ||n

(1 + pk + · · ·+ pkν) =
∏
pν ||n

pk(ν+1) − 1

pk − 1
.

6.1. The ring of arithmetic functions. Many of the properties

of arithmetic functions are best understood in terms of a natural

structure of a ring which one can define on them. As usual we can

add two arithmetic functions f and g by defining their sum f + g by

(f + g)(n) = f(n) + g(n).

Definition. The Dirichlet product of to arithmetic functions f and

g is the arithmetic function f ∗ g which is defined by

(f ∗ g) (n) =
∑
d|n

f(d) g(n/d) =
∑
de=n

f(d) g(e).

(The second sum is over all pairs (d, e) of positive integers such that

de = n.)

As a first indicator for the usefulness of these definitions note

that, for a given arithmetic function f the summatory function F is

nothing else but f ∗ C, where C is the functions with single value 1

(i.e. C(n) = 1 for all n).

Theorem. The set A of arithmetic functions together with the usual

addition and the Dirichlet product satisfies the axioms of a commu-

tative ring with neutral element.

Proof. We have to show that for our addition and Dirichlet product

the following properties are satisfied.

(1) f + (g + h) = (f + g) + h
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(2) f + g = g + f

(3) f + 0 = f

(4) f + (−f) = 0

(5) f ∗ (g ∗ h) = (f ∗ g) ∗ h
(6) f ∗ g = g ∗ f
(7) f ∗ E = f

(8) f ∗ (g + h) = f ∗ g + f ∗ h

Here 0 denotes the function which is identically 0, and −f is the

function such that (−f)(n) = −f(n). Finally, E denotes the function

E(n) =

{
1 if n = 1,

0 otherwise.
.

We leave it to the reader to verify these properties. Most of them

are quickly checked. For (5) we suggest to verify that both sides,

evaluated at an argument n, equal∑
abc=n

f(a)g(b)h(c),

the sum being over all triples (a, b, c) of positive integers such that

abc = n. �

Though it is not necessary for the understanding of the following

it might be helpful for the interested reader to look at the subsequent

results with a bit of abstract algebra. Given a ring R one is interested

in the group R∗ of units in R. By this one means the subset R∗ of

elements r in R for which there exists an element s in R such that

rs = sr = 1 (where 1 denotes the multiplicative unit element in R).

If r and r′ are units then rr′ is a unit, and, in fact, R∗ possesses the

structure of a group with respect to the multiplication in the ring.

Theorem. Let f ∈ A. Then f ∈ A∗ (i.e. there exists a g in A such

that f ∗ g = E) if and only if f(1) 6= 0.

Proof. If f ∗ g = E for some g, then in particular f(1)g(1) = 1, and

therefore f(1) 6= 0. Assume vice versa that f(1) 6= 0. We define g by
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induction: set g(1) = 1/f(1) and

g(n) = − 1

f(1)

∑
d|n
d<n

g(d) f(n/d).

Clearly then (g ∗ f)(1) = 1 and (g ∗ f)(n) = 0 for n ≥ 2. �

Theorem. The set M of multiplicative arithmetic functions is a sub-

group of A∗, i.e.:

(i) if f is multiplicative, then f ∈ A∗,

(ii) if f and g are multiplicative, then f ∗ g is multiplicative too,

(iii) if f is multiplicative, then its inverse f−1 (with respect to

the Dirichlet product) is multiplicative.

Proof. We saw already that a multiplicative function f satisfies f(1) =

1, so that, by the preceding theorem, it is invertible.

Assume that f and g are multiplicative and let h = f ∗ g. For

proving that h is multiplicative let m and n be two positive and

relatively prime integers. We leave it to the reader to verify that the

application (d, e) 7→ de defines a bijection

D(m)×D(n)
∼=−→ D(mn),

where, for an integer l, we use D(l) for the set of divisors of l. Using

this bijection we find

h(mn) =
∑

t∈D(mn)

f(t) g(mn/t) =
∑

(d,e)∈D(m)×D(n)

f(de) g(mn/de)

=
∑

(d,e)∈D(m)×D(n)

f(d)f(e) g(m/d)g(n/e)

=
∑

d∈D(m)

f(d) g(m/d)
∑

e∈D(n)

f(e) g(n/e) = h(m)h(n).

The proof that f−1 is multiplicative if f is multiplicative is similar

(use the formula for f−1 from the preceding proof). �

Example. From the theorem it is immediate that the divisor sum

functions σk = C ∗ Idk are multiplicative, since the constant function

C ≡ 1, the identity function Id and then also Idk : n 7→ nk are

obviously multiplicative.
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If G is the summatory function of a given arithmetic function g

it is often useful to be able to express g in terms of G. This is indeed

always possible. Namely, that G is the summatory function of g

means that G = C ∗ g with C denoting the constant function n 7→ 1.

Since C(1) = 1 we know that C is invertible. Hence g = C−1 ∗ G.

For turning this into a useful formula we need to study C−1, which

we shall do now.

Definition (Möbius’ µ-function). The arithmetic function µ which

is defined by

µ(n) =

{
0 if n is not squarefree,

(−1)r if n is squarefree and the product of r primes.

is called the Möbius µ-function.

A number n is called squarefree if n is not divisible by the square

of a prime, or, equivalently, by a perfect square different from 1.

n 1 2 3 4 5 6 7 8 9 10

µ(n) 1 -1 -1 0 -1 1 -1 0 0 1

Table 2. The first values of the Möbius µ-function

Theorem. For any positive integer n, one has∑
d|n

µ(d) =

{
1 n = 1,

0 n > 1

(i.e.. µ is the inverse of the constant function C ≡ 1 with respect to

the Dirichlet multiplication).

Proof. Set G(n) =
∑
d|n µ(d), i.e. G = C ∗ µ. Clearly G(1) = 1.

From the definition of µ it is clear that µ is multiplicative, and so

is then G too. Hence, for proving G(n) = 0 for n ≥ 2 it suffices to

calculate G(pr) for any given prime power pr. But from the definition

of µ we have G(pr) = µ(1) + µ(p) = 0,which proves the theorem. �

We can finally make the above formula g = C−1∗G more explicit.
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Theorem (Möbius’ inversion). Let G and g be arithmetic functions.

Then one has:

∀n : G(n) =
∑
d|n

g(d) if and only if ∀n : g(n) =
∑
d|n

µ(n/d)G(d).

Proof. This is an immediate consequence of the preceding theorem

which can be restated as µ ∗ C = E, i.e. µ = C−1. Hence G = g ∗ C
if and only if g = G ∗ µ, which is the claim. �

Example. 1. We saw in Section 3.4 that
∑
d|n ϕ(d) = n for all n.

Via Möbius inversion we obtain the formula

ϕ(n) =
∑
d|n

µ(n/d) d.

Another type of inversion which one encounters often in number

theory is the following. Let f be an arithmetic function and let, for

any positive integer n,

F (n) =
∑
d|n

n/d squarefree

f(d).

Here the sum is over all positive divisors d of n such that n/d is

squarefree. The above equation can be written shorter as F = f ∗χsf ,

where χsf(n) = 1 if n is squarefree and equals 0 otherwise. Since

χsf(1) = 1 the function χsf is a unit, and hence f = χ−1
sf ∗ F . We

leave it to the reader to prove

Theorem. one has

χ−1
sf = λ.

(Here λ is Liouville’s λ-function.)

In other words, the above formula expressing F in terms of f is

equivalent to

f(n) =
∑
d|n

F (d)λ(n/d).
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6.2. Growth estimates of arithmetical functions. It is clear

that, for all integers n ≥ 1,

ϕ(n) ≤ n− 1, n+ 1 ≤ σ1(n)

since among the n residues moulo n at most the ones different from 0

can be relatively prime to n, and since 1 and n are divisors of any

given integer n ≥ 1. Obviously, one cannot improve thesese estimates

as one recognizes if one takes for n a prime. More difficult to prove

are the following estimates to below, whose proof we do not give here.

Theorem. For any n > 2, one has the following inequalities2

n

eγ log log n+ 3/ log log n
< ϕ(n),

σ(n) < n (eγ log log n+ 0.6483/ log log n) ,

where γ is Euler’s constant.

We shall not prove this theorem. As the reader might guess from

the appearance of the logarithm the proof would involve quite a bit of

Analysis. What makes these estimates difficult is the erratic jumping

of ϕ(n) and σ(n). However, as it turns out the jumping behaviors

of these functions are quite similar. Namely, their product σ(n)ϕ(n)

behaves rather smoothly as follows from the following theorem (see

also Figure 3).

Theorem. For n > 1 one has

6

π2
<
σ(n)ϕ(n)

n2
< 1.

Proof. We use the formulas

σ(n) =
∏
pr‖n

pr+1 − 1

p− 1
. ϕ(n) = n

∏
p|n

(
1− 1

p

)
,

from which we deduce

σ(n)ϕ(n)

n2
=
∏
pr‖n

(
1− 1

pr+1

)
.

2For the first one see [?, Thm. 15 and §9], for the second one [?].
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Figure 2. Scatter plot of the points (n, ϕ(n)) and the lower
bound (in blue) of the theorem. The thick upper bounding

line is y = x− 1 and is reached by primes n.

The right hand side is (for n > 1) obviously strictly smaller than 1

and strictly larger than
∏
p

(
1− 1

p2

)
, where the product is taken over

all primes p. We shall prove below that∏
p

(
1− 1

p2

)−1

=
∑
n≥1

1

n2
=
π2

6
.

which completes the proof of the theorem. �

The difficulty in getting good estimates for arithmetical functions

is that they very often jump in a very irregular manner as we see

for example for the number d(n) of divisors of n which falls back

to 2 for primes but can also be exponentially big like 2r if n is the

product of r different primes. For obtaining still meaningful estimates

it one can try to ‘smoothen’ the arithmetical function in question.

One can try, for example, to estimate the maximum taken over all

arguments below a given n, or one can try to estimate the average.
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Figure 3. The graphs of y = x2, y = 6
π2 x

2 and the set of

points (n, σ(n)ϕ(n)).

The following two theorems illustrate these ideas. If f and g are two

arithmetical function we write f(n) ∼ g(n) for indicating that the

quotient f(n)/g(n) tends to 0 for increasing n.

Theorem.

max
k≤n

d(k) ∼ n log 2

log log n

We shall not prove this theorem but prove instead the following.

Theorem.

1

n

n∑
k=0

σ1(k) ∼ π2

12
n

Proof. This can be seen as follows:

1

n2

n∑
k=0

σ1(k) =
1

n2

∑
de≤n

e =
1

n2

∑
d≤n

∑
e≤nd

e =
1

n2

∑
d≤n

1

2

⌊n
d

⌋(⌊n
d

⌋
+ 1
)
.
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Using fr(x) for the fractional part of a real number x, we can continue

=
1

2

∑
d≤n

1

d2
+

1

2n

∑
d≤n

fr(n/d)

d
+

1

2n2

∑
d≤n

fr(n/d) (fr(n/d) + 1) .

The second and third sum tend obviously to 0 as n grows. (For

this one needs that the harmonic numbers Hn =
∑
d≤n

1
d satisfy

Hn ∼ log n.) We finally use a formula that the reader might have

seen in some course on calculus (and which we shall prove again later),

namely
∑
d≥1

1
d2 = π2

6 . The theorem becomes now obvious. �

The reader with advanved skills in Analysis might want to try

to mimic the proof of the preceding theorem and establish that more

generally, for any integer r ≥ 1.

1

n

n∑
k=0

σr(k) ∼ ζ(r + 1)

r + 1
nr,

where ζ(s) =
∑
n≥1

1
ns denotes the Riemann ζ-function (which we

shall discuss later), and that

1

n

n∑
k=0

σ0(k) ∼ log n.

6.3. Dirichlet series. The formal treatment of arithmetical func-

tions as ring with respect to the Dirichlet product grew naturally out

of manipulations of Dirichlet series. In fact, one could present our

theory of arithmetical functions as part of the theory of Dirichlet se-

ries. However, for reasons of convergence one would have to confine

oneself to arithmetic functions of polynomial growth. A third pos-

sibility would be to introduce formal Dirichlet series. This theory

would then perfectly equivalent to our algebraic theory but still no-

tionally very close to the theory of convergent Dirichlet series. The

theory of formal Dirichlet series requires a bit of training in algebra

though. The interested reader can find it in the appendix to this

chapter. In the following paragraphs we explain the basics of the

theory of (convergent) Dirichlet series.
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Definition (Dirichlet series). A Dirichlet series is an infinite series

of functions of the form

Df (s) :=

∞∑
n=1

f(n)

ns

where f is an arithmetical function.

Recall that, for any n and complex number s, one has ns =

exp(−s log n). It arises now the natural question if there are real or

complex numbers s, for which a given Dirichlet series converges. It is

quickly satisfied that a given Dirichlet series converges absolutely for

all <(s) ≥ <(s0) if it converges absolutely for s0, and it defines then

a holomorphic function Df (s) in the right half plane <(s) > <(s0)3

Note also that a Dirichlet series converges absolutely at s0 if and

only if it converges absolutely at every point of the line <(s) = <(s0)

as follows from the identity |ns| = n<(s) (valid for all real n). The

question when a given Dirichlet series converges, say, at at a real k,

is easily answered.

Theorem. The Dirichlet series Df (s) converges absolutely in some

right half plane if and only if f is of polynomial growth (i.e. if and

only if for some k the sequence |f(n)/nk| is bounded for all n).

Proof. The Dirichlet series

ζ(s) =
∑
n≥1

1

ns

is convergent for s > 1. This is quickly checked for example using

that, for n ≥ 2, one has 1
ns ≤

∫ n
n−1

x−s dx, and therefore, for s > 1∑
n≥2

1

ns
≤
∫ ∞

1

x−s dx = s− 1.

Assume there for some real C and k one has |f(n)| ≤ Cnk for all

n. Then Df (s) is majorized by ζ(s− k), hence absolutely convergent

for <(s) > k + 1.

3The reader not acquainted to the notion of holomorphic functions may assume in
the following that the arguments of the Dirichlet series are real numbers. A Dirichlet
series converging absolutely at a real point s0 converges then absolutely and uniformly
in the interval s ≥ s0 and defines a continuous function which is analytic function
in s > s0.
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Assume vice versa that Df (s) converges at s = k for some real k.

Then the sequence f(n)/nk converges to 0, and, in particular, it is

bounded. �

We can now describe the relation between the ring of arithmetic

functions and Dirichlet series. For this let D denote the set of Dirichlet

series which converge absolutely in some right half plane, and let Apg

the subset of A consisting of all arithmetical functions f which are of

polynomial growth, i.e. which satisfy f(n) = O(nk) for some integer

n ≥ 0.

Lemma. The set Apg is a subring of A (i.e. if f and g are of poly-

nomial growth then f ± g and f ∗ g are of polynomial growth too).

Proof. Let f and g be of polynomial growth, say |f(n) ≤ Cnk and

|g(n) ≤ C ′nl for all n, and let m = max(k, l). It is clear that (f±g) =

O(nm). Moreover,

|(f ∗ g)(n)| ≤
∑
d|n

|f(d)| · |g(n/d)|

≤ CC ′
∑
d|n

dk(n/d)l ≤ CC ′d(n)nm.

Since d(n) = O(n) we see that (f ∗ g)(n) = O(nm + 1). �

The following two theorems are straight-forward and left as an

exercise to the reader.

Theorem. The set D forms a ring with respect to usual (point-wise)

addition and multiplication of complex valued functions. The appli-

cation f 7→ Df defines an isomorphism of rings

Apg

∼=−→ D.

The inverse of a Dirichlet series in D is again an element of D.

This statement is equivalent to

Theorem. One has

A∗pg = A∗ ∩ Apg.
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The fact that a given arithmetic functions f is multiplicative cor-

responds to the fact that Df factors as an Euler product. More

precisely, we have

Theorem. Let f be a multiplicative arithmetic function such that

Df (s) converges absolutely in a right half plane <(s) > k. Then, for

all <(s) > k, one has

Df (s) =
∏
p

∑
l≥0

f(pl) p−ls,

where the product is taken over all primes p, and is absolutely con-

vergent.

Proof. From the assumption it is clear that, for each prime p, the

series
∑
l≥0 f(pl) p−ls is absolutely convergent for <(s) > k. Let

p1 < p2 < . . . be the series of prime numbers and let <(s) > k.

Then, for any N , one has

N∏
j=1

∑
l≥0

f(plj) p
−ls
j =

∑
l1,...,lN≥0

f(pl1) · · · f(plN )

(pl11 · · · p
lN
N )s

=
∑
n∈XN

f(n)

ns
,

where XN denotes the set of positive integers containing only the

primes pj (1 ≤ j ≤ N). It follows∣∣∣∣∣∣Df (s)−
N∏
j=1

∑
l≥0

f(plj) p
−ls
j

∣∣∣∣∣∣ ≤
∑
n>N

|f(n)|
n<(s)

,

where we used that every positive integer containing at least one

prime pj with j ≥ N is larger than N . By assumption the right hand

side of this inequality converges to 0 as N grows. This proves the

theorem. �

We finally turn to concrete examples. The simplest non-trivial

Dirichlet series is DC , which we shall according to common notation

denote by ζ(s). Thus, for <(s) > 1,

ζ(s) =
∑
n≥1

1

ns
=
∏
p

1

1− p−s
.
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f Df (s)

σk ζ(s)ζ(s− k)

µ 1/ζ(s)

ϕ ζ(s− 1)/ζ(s)

λ ζ(2s)/ζ(s)

Table 3. Dirichlet series of classical arithmetical functions

Here the second identity follows from the last theorem and
∑
l≥0 p

−ls =

1/(1 − p−s). This identity is (for positive integers s) contributed to

Euler and known as Euler’s identity.

Recall that f ∗ C, for any f in Apg, is the summatory function

of f . Accordingly, we have

ζ(s)
∑
n≥1

f(n)

ns
=
∑
n≥1

∑
d|n f(d)

ns
.

Many Df can be expressed in terms of the Riemann zeta function.

The reader can find examples of this in Table 3. For verifying the en-

tries of the table note that DIdk(s) = ζ(s−k) (where as in Section 6.1

Idk : n 7→ nk). Using these identities the first three entries in the ta-

ble follow from σk = C ∗ Idk, µ = C−1, and C ∗ ϕ = Id, respectively.

The last entry follows from C ∗ λ = χ� and Dχ�
(s) = ζ(2s), where

χ�(n) = 1 if n is a perfect square, and χ�(n) = 0 otherwise.

7. Remarks

7.1. Formal Dirichlet series. Identities for arithmetic functions

can often be easily recognized and proved using Dirichlet series. For

example the identity λ−1 = χsf from Section 6.1 becomes almost

trivial when rewritten in terms of Dirichlet series:

Dλ(s) =
∏
p

1

1 + p−1
,

so that 1/Dλ(s) =
∏
p 1 + p−1, which obviously equalsDχsf

(s), i.e. the∑
n 1/ns, where n runs over all squarefree integers. Unfortunately,

such arguments seem to require a region of absolute convergence for

the underlying series and hence apply only to arithmetic functions



7. Remarks 67

of polynomial growth. However, this is not quite true. In fact, it is

possible to extend the algebraic theory of arithmetic functions so to

mimic as close as possible the desired manipulations with Dirichlet

series. This leads to the theory of formal Dirichlet series, which we

shall now explain. The reader inexperienced in algebra might want

to skip this section.

If f is an arithmetic function and z a complex number then zf ,

i.e. the function n 7→ zf(n), is also an arithmetic function. This

multiplication of arithmetic functions by scalars (together with the

addition of arithmetic functions) turns A into a vector space over the

complex numbers C. In fact, A equipped with this scalar multiplica-

tion, the addition of functions and the Dirichlet product satisfies the

axioms of a commutative algebra over C.

Let {fi}i∈I be a (possibly infinite) family4 of arithmetic functions

such that for each integer n ≥ 1 one has fi(n) = 0 for all but finitely

many i in I. We call such a family summable. We can then define

the sum of the family {fi}i∈I , denoted by∑
i∈I

fi

as the arithmetic function which associates to a given integer n ≥ 1

the (finite) sum
∑
i∈I fi(n).

Special summable families are obtained as follows. For an integer

n ≥ 1, we use n−s for the arithmetic function which maps n to 1 and

n′ 6= n to 0. The family {n−s}n∈Z≥1
is obviously summable, and so

is {f(n)n−s}n∈Z≥1
for any given arithmetic function f . Using these

notations we can now write every arithmetic function f as sum of the

family {f(n)n−s}n∈Z≥1
, i.e. we can write any f in the form

f =
∑
n≥1

f(n)n−s.

The expression on the right is called a formal Dirichlet series. The

reader should note that we did not introduce a new mathematical

object, but merely a new language for treating arithmetic functions.

We shall see that this language has certain advantages.

4A family {xi}i∈I of elements of a set X is nothings else than a map I → X,
i 7→ xi.
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We encourage the reader to practice calculating with formal

Dirichlet series and thereby discover natural rules to manipulate them.

The first thing to discover is that the Dirichlet product becomes very

natural in the language of formal Dirichlet series. Namely, one has

m−s ∗ n−s = (nm)−s. Because of this one usually uses the dot “·”
for the operation symbol ∗ when dealing with formal Dirichlet series,

and sometimes one simply omits the dot, so that we can write, for ex-

ample, m−sn−s = (mn)−s. The product of two arithmetic functions

f and g can then be calculated as∑
m≥1

f(m)m−s

∑
n≥1

g(n)n−s


=
∑
m,n≥1

f(m)g(n)m−sn−s =
∑
l≥1

(∑
mn=l

f(m)g(n)

)
l−s

Here we use for the first identity that the product of the sums of two

summable families {fi}i∈I and {gj}j∈J equals the sum of the (again

summable) family {fi ∗ gj}(i,j)∈I×J . For the second identity we use

that the sum of the family {fi}i∈I equals the sum of {
∑
i∈Ij fi}j∈J

for any partition of I into a disjoint union of finite sets Ij (j ∈ J).

We call a (possibly infinite) family {fi}i∈I of arithmetic functions

multiplicable if we have

(1) for each n ≥ 2, we have fi(n) = 0 for all but finitely many i,

(2) and fi(1) = 1 for all i.

For a multiplicable family we define the product
∏
i∈I fi of the family

{fi}i∈I as the arithmetic function

n 7→
∑
{di}i∈I

n=
∏
i∈I di

∏
i∈I

fi(di).

Here {di}i∈I runs through all families of positive integers di such

that di = 1 for all but finitely many i. The inner product has to be

understood as the finite product over all i in I such that fi(di) 6= 1.

The sum is over the (finitely) many families {di}i∈I for which the

inner sum is different from zero. The reader should notice that this



7. Remarks 69

product applied to a finite family is nothing else but the Dirichlet

product of the members of this family.

Special multiplicable families are obtained as follows: for each

prime p let ap be a map Z≥0 → C with ap(0) = 1. Then the family

{
∑
k≥0

ap(k) p−ks}p

(where p runs through all primes) is multiplicable. Indeed, for any

given n ≥ 2,
(∑

k≥0 ap(k) p−ks
)

(n) 6= 0 for at most one p (namely,

at most if n is power of p). The product of such a family is called

an Euler product. The reader should verify that the product is the

arithmetic function

n 7→
∏
pk|‖n

ap(k),

where the product is over all prime powers pk exactly dividing n

(i.e. dividing n such that n/pk is relatively prime to p). The reader

should also prove that an arithmetic function f is multiplicative if

and only if it can be factored into an Euler product, which means

that f(1) = 1 and

f =
∏
p

∑
k≥0

f(pk) p−ks.

It is quickly verified that, for each prime p, the formal Dirichlet

series
∑
k≥0 p

−ks is the inverse (with respect to Dirichlet multiplica-

tion) of 1− p−s. Therefore

C =
∑
n≥1

n−s =
∏
p

1

1− p−s
,

µ = C−1 =
∏
p

(
1− p−s

)
,

σk =
∑
n≥1

∑
d|n

dk n−s =
∏
p

1

(1− p−s)(1− pk−s)
,

ϕ =
∏
p

1− p−s

1− p1−s ,

λ =
∏
p

1

1 + p−s
.
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Note that from these formulas various identities which we encountered

before become rather trivial. For example, the identity
∑
d|n ϕ(d) = n

reads in terms of formal Dirichlet series Cϕ = Id, which is obvious

from the Euler product decomposition of C and ϕ. Similarly, the

identities µ = 1/C and λ = 1/χsf become trivial when rewritten in

terms of Euler products.

As an exercise the reader might try to find out how to describe

the property of an arithmetic function f to be strongly multiplicative

in terms of its Euler product.

7.2. Special values of the Riemann zeta function. We used at

several occasions the identity ζ(2) = π2/6. This identity was first

proved by Euler in 1734 as a response to the Basel problem which

asked for the summation of the series 1 + 1/4 + 1/9 + 1/16 + · · · . In

fact, for every positive even integer the value of ζ(s) is known to be

rational up to a power of π. More precisely, one has the following

formula.

Theorem. For all positive integers k, one has

ζ(2k) = π2k 22k−1

(2k)!
|B2k|.

Here Bk denotes the kth Bernoulli number.

The Bernoulli numbers are defined by the identity

x

ex − 1
=
∑
k≥0

Bk
k!
xk.

Multiplying this identity by ex − 1 and comparing coefficients this

identity becomes a recursion for the Bk, namely

B0 = 1,

l−1∑
k=0

(
l

k

)
Bk = 0 (l ≥ 2).

Thus B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , . . . . We leave it as an exercise to

prove that Bl = 0 for all odd l ≥ 3. This (and many other properties

of the Bernoulli numbers) can be easily deduced from their generating

series given above.



7. Remarks 71

There is a quick proof that ζ(2k) ∈ π2kQ∗, which is due to Calabi5

In the following we explain this proof.

For a positive integer n, let Pn be the polytope in n-dimensional

Euclidean space with coordinates (x1, . . . , xn) which is given by the

following equations:

0 ≤ xi ≤ 1, 0 ≤ xi + xi+1 ≤ 1 (i = 1, . . . , n).

Here we use xn+1 = x1. The polytope is bounded (as subset of the

unit cube 0 ≤ xi ≤ 1) and convex (as it is defined as an intersection of

half spaces). Let vol(Pn) the Euclidean volume of Pn. From general

theory of poytopes its follows that vol(Pn) is a rational number since

it is defined as intersection of half spaces whose boundaries are hyper-

surfaces defined by equations with rational coefficients.

Theorem. For every positive integer k one has

ζ(2k) =
π2k

22k − 1
vol(P2k).

Proof. We have(
1− 2−2k

)
ζ(2k) =

∞∑
n=0

1

(2n+ 1)2k

=

∞∑
n=1

∫ 1

0

· · ·
∫ 1

0

u2n
1 · · ·u2n

2k du1 ∧ · · · ∧ du2k

=

∫ 1

0

· · ·
∫ 1

0

du1 ∧ · · · ∧ du2k

1− u2
1 · · ·u2

2k

.

We now set

ui =
sin π

2xi

cos π2xi+1
(1 ≤ i ≤ 2k).

We leave it to the reader to check that this application maps P2k

one-to-one onto the unique cube [0, 1]2k, and that

du1 ∧ · · · ∧ du2k

1− u2
1 · · ·u2

2k

=
(π

2

)2k

dx1 ∧ · · · ∧ dx2k.

This proves the theorem. �

5The second author learned this proof from Calabi 1985 when he was lecturer at
the University of Pennsylvania.
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Comparing the formulas for ζ(2k) in terms of Bernoulli numbers

and of the preceding theorem we find

vol(P2k) =
22k−1(22k − 1)

(2k)!
|B2k|.

It would be interesting to have a direct proof of this formula since

this would provide, combined with the proof of the previous theorem,

a new proof for the well-known formulas for ζ(2k).



Chapter 3

Primes and factorization

8. Fermat and Mersenne primes

When studying primes and factorization of integers it is natural to

investigate numbers of a special shape. In this section we discuss two

kinds of such numbers, namely numbers of the form 2n+1 and 2n−1.

A prime of the form 2n + 1 is called a Fermat prime. The first ones

are the five numbers Fk := 22k + 1 with 0 ≤ k ≤ 4.

k 0 1 2 3 4

Fk 3 5 17 257 65, 537

In fact, not more is currently known. The first observation for their

study is the following theorem.

Theorem. If p = 2n + 1 is a prime number then n is a power of 2.

Proof. If n = 2km with an odd number m > 1 then, setting u = 22k ,

the number 2n + 1 = um + 1 factors as

um + 1 =
(
u+ 1

)
·
(
um−1 − um−2 + um−3 − · · ·+ 1

)
,

and both factors are different from 1. �

For an integer k ≥ 0 the number

Fk := 22k + 1

73
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is called the kth Fermat number. A natural question is when Fk is

indeed a prime. Since the time of Fermat people tried to factor more

and more Fermat numbers and they searched for criteria to recognize

the primes among them. The following two theorems give two such

criteria.

Theorem (Pépin’s test). Assume k ≥ 2. Then Fk is a prime number

if and only if

3
Fk−1

2 ≡ −1 mod Fk.

Proof. Set N := Fk. Since k ≥ 2 we have N ≡ 2 mod 3 and N ≡
1 mod 4. The first congruence implies

(
N
3

)
=-1, and the second

(
N
3

)
=(

3
N

)
, hence (

3

N

)
= −1.

If N is prime the claimed congruence of the theorem is therefore

nothing else than Euler’s criterion (Section 5).

Vice versa, setting l = 2k, the claimed congruence implies

32l = 3N−1 ≡ 1 mod N, 32l−1

= 3
N−1

2 6≡ 1 mod N,

and hence the order of 3 modulo N equals N − 1. But then N has

N − 1 primitive residue classes (represented by the powers of 3) and

therefore N must be prime. �

Theorem. Assume k ≥ 2. If p is a prime divisor of Fk, then

p ≡ 1 mod 2k+2.

Proof. Let p be a prime divisor of Fk. Clearly, 22k ≡ −1 mod p,

which implies that the order of 2 modulo p is 2k+1, and therefore

2k+1 | p− 1. Since k ≥ 2 the latter implies in particular p ≡ 1 mod 8,

and therefore 2 ≡ a2 mod p for some a. But this means

a2k+1

≡ 22k ≡ −1 mod p,

which implies that the order of a modulo p is 2k+2, which in turn

implies the claimed congruence. �

The Fermat primes occur also in another context. Namely, one

has the following theorem of Gauss.
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Theorem (Gauss). A regular n-gon can be constructed with compass

and straightedge if and only if ϕ(n) is a power of 2.

Constructing a regular n-gon means in a properly chosen coor-

dinate system of the Euclidean plane (which we identify with the

complex plane) constructing a primitive nth root of unity ζ1. A con-

struction with compass and straightedge consists of exhibiting a se-

quence P0 = 0, P1 = 1, P2, . . . of points in the plane where each point

Pl is the intersection of lines, circles or lines with circles, and where

these lines are lines through points Pk and where these circles have

as midpoints points Pk and as diameters distances between points

Pk, always with k < l. In particular, the coordinates of each Pl are

solutions of linear equations or quadratic equations whose coefficients

are obtained from the coordinates of points Pk (k < l) by applying

elementary arithmetic operations. Therefore, constructing ζ means

that ζ can be obtained as the last element of a finite sequence of com-

plex numbers where each number is obtained from numbers occurring

earlier in the sequence via an elementary arithmetic operation or via

taking a square root. The inverse operation to taking a square root

is squaring. It is then plausible that the degree of ζ (i.e. the minimal

degree which a polynomial with rational coefficients having ζ as zero

can have) is a power of 2 if ζ is constructible, and vice versa2. On the

other hand one knows that this minimal degree is ϕ(n) (namely, the

degree of the nth cyclotomic polynomial
∏
d|n(xd − 1)µ(n/d), which is

the unique monic polynomial with rational coefficients and minimal

degree having ζ as a root). This reasoning can in fact be turned into a

rigorous proof of Gauss’ theorem using the theory of field extensions.

Returning to number theory it is easy to prove the following.

Theorem. For a positive integer n, the number ϕ(n) is a power of 2

if and only if

n = 2tp1p2 · · · pr

for some t ≥ 0 and Fermat primes p1 < p2 < · · · < pr.

1This means ζn = 1 and n is the smallest positive integer with this property.
2In fact, the constructible numbers form a subfield of C which can be characterized

as the field of algebraic numbers whose degree is a power of 2.
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Proof. Since ϕ is multiplicative it suffices to prove the theorem for

prime powers n = pr. For p = 2 we have ϕ(2r) = 2r−1. If p is odd

then ϕ(pr) = pr−1(p − 1) and this is a power of 2 only if r = 1 and

p = 2s + 1 for some s. �

The only known numbers n for which an n-gon can be constructed

are therefore the numbers of the form

n = 2t
∏
p∈F

p,

where F is one of the 25 subsets of the five known Fermat primes.

The first of these numbers are = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24.

The 65537-gon was explicitly constructed by Johann Gustav Hermes

in 1894 after 10 years of work3

Another kind of special primes are the Mersenne primes, which

are primes of the form

Mn := 2n − 1

for some integer n ≥ 1. The numbers Mn, without the requirement to

be prime, are called Mersenne numbers, named after Marin Mersenne

who studied the Mersenne primes in the early 17th century. The first

Mersenne primes are

n 2 3 5 7 13 17 19 31

Mn 3 7 31 127 8, 191 131, 071 524, 287 2, 147, 483, 647

The largest known one (as of June 2016) is

274,207,281 − 1 = 153634 . . . 673003 (22, 338, 618 decimal digits)

The above table suggests the following observation.

Theorem. If Mn is a prime than p is prime.

Proof. If n = ab with a, b > 1 then Mn factors as

Mab =
(
2a − 1

)
·
(
(2a)b−1 + (2a)b−2 + · · ·+ 1

)
,

which proves the claim. �

3The notes for the construction can still be consulted in the mathematics library
of the university of Göttingen. Hermes submitted his construction as doctoral thesis
to the university and obtained indeed his degree with the support of Felix Klein.
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For testing whether a Mersenne number is a prime one usually

applies the following theorem.

Theorem (Lucas-Lehmer test). Let p be an odd prime. Then Mp

is a prime of and only if Mp divides the term Cp−1 of the sequence

defined by

C1 = 4, Cn = C2
n−1 − 2 (n ≥ 2)

The first six terms of the Lucas-Lehmer sequence Ck are

4 14 194 37, 634 1, 416, 317, 954 2, 005, 956, 546, 822, 746, 114

Proof of the theorem. Let l be a prime, and let A be the ring of

matrices of the form
[
a 3b
b a

]
, where a and b are in Fl. The word ring

indicates that A is closed under addition, differences and multiplica-

tion of matrices (as the reader should verify)4. A matrix is
[
a 3b
b a

]
is

invertible if its determinant is different from zero. Let A∗ denote the

group of invertible matrices in A. Since A has l2 elements and the

zero matrix is not invertible, we conclude card (A∗) ≤ l2 − 1. The

order of an invertible matrix M in A∗ is by definition the smallest

positive integer n such that Mn = 1 (where we use 1 for the unit

matrix). For the proof of the theorem we need a result from basic

group theory, namely that the order n of M satisfies n ≤ card (A∗).
We set

A =

[
2 3

1 2

]
, B = A−1 =

[
2 −3

−1 2

]
.

With [x] denoting the residue class of x modulo l we have A2n−1

+

B2n−1

= [Cn]·1 as is quickly verified by induction over n. Multiplying

this identity by A2n−1

, we have equivalently

A2n = [Cn] ·A2n−1

− 1.

Suppose now that Mp | Cp−1. Choosing for l a prime divisor

of Mp we find [Cp−1] = 0 and hence A2p−1

= −1, which implies that

the order of A equals 2p. But then 2p ≤ card (A∗) ≤ l2 − 1, and

hence Mp < l2. This shows that Mp is prime (since otherwise it

would possess at least one prime divisor l with l2 ≤Mp).

4The educated reader might notice that A is nothing else than the quotient
Fl[X]/(x2 − 3) of the polynomial ring Fl[X] by the ideal generated by x2 − 3. In

other words, A equals the field with l2 elements or the direct product of Fl with itself.
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Vice versa, assume Mp is prime. Choose now l = Mp. We have

to show that A2p−1

= −1. For this we note A = 1
6C

2 with C = [ 3 3
1 3 ].

Accordingly

A2p−1

= A
l+1
2 =

Cl+1

6
l+1
2

=

(
6

l

)
Cl+1

6
,

where for the last equality we used Euler’s criterion (Section 5). But

3 is a quadratic non-residue mod l since
(

3
l

)
= −

(
l
3

)
and l = 2p−1 ≡

1 mod 3. Similarly, 2 is a quadratic residue modulo l since l = 2p−1 ≡
−1 mod 8. Hence

(
6
l

)
= −1. Moreover,

Cl = (3 + [ 0 3
1 0 ])

l
= 3l + [ 0 3

1 0 ]
l

= 3 + 3
l−1
2 [ 0 3

1 0 ] =
[

3 −3
−1 3

]
,

where we used [ 0 3
1 0 ]

2
= 3 and again Fermat’s little theorem and Eu-

ler’s criterion. It follows Cl+1 =
[

3 −3
−1 3

]
C = 6, and the claim is now

obvious. �

The Lucas-Lehmer test is quickly turned into an algorithm.

Algorithm: Luca-Lehmer test

def LLt ( p) :

”””

Return True are False a c c o r d i n g l y as

2ˆp−1 i s a prime or not .

”””

M = 2∗∗p−1

C = Mod(4 , M)

for n in range (2 , p ) :

C = C∗∗2−2

return 0 == C

The Mersenne primes are connected with a problem from ancient

times. A number n is perfect if it equals the sum of its positive divisors

different from n. The first perfect number are

6 28 496 8128 33, 550, 336 8, 589, 869, 056.
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Theorem (Euler). An even positive integer n is perfect if and only

if

n = 2p−1(2p − 1)

with a Mersenne prime 2p − 1.

Proof. If n is of the given form, then

σ(n) = σ(2p−1)σ(2p − 1) = (1 + 2 + · · ·+ 2p−1) · 2p = 2n,

where σ(n) is the sum of divisors of n. Hence n is perfect.

Vice versa, write n = 2p−1a with an integer p ≥ 2 (recall that n

is even) and an odd integer a. Then σ(n) = 2n becomes

2pa = (2p − 1)σ(a).

It follows (2p − 1) | a, say a = (2p − 1)b, and hence

2p(2p − 1)b = (2p − 1)σ((2p − 1)b) ≥ (2p − 1)(b+ (2p − 1)b).

But this inequality is obviously possible only as equality, i.e. only for

b = 1, which in turn implies σ(2p−1) = 2p, i.e. that 2p−1 is a prime.

This proves the theorem. �

We do not know whether there exist odd perfect numbers, nor do

we know if there are infinitely many even ones, i.e. if there are infin-

itely many Mersenne primes. Even more, it is also unknown whether

there are infinitely many composite Mersenne numbers Mp with a

prime p. In this context the following theorem is interesting;

Theorem (Euler). Let p be a prime, p ≡ 3 mod 4. Then 2p + 1 is

prime if and only if 2p+ 1 divides 2p − 1.

Proof. If 2p+ 1 is prime than by Euler’s crierion 2p ≡
(

2
2p+1

)
mod

2p + 1. By assumption p ≡ 3 mod 4 and hence 2p + 1 ≡ 7 mod 8, so

that
(

2
2p+1

)
= −1.

Vice versa, assume 2p ≡ −1 mod 2p+ 1. Let l be a prime divisor

of 2p+ 1. The congruence taken modulo l implies that the order of 2

modulo l equals p, and hence p | l− 1, i.e. l = pt+ 1 for some integer

t > 1. Since l ≤ 2p+1 we conclude t = 2 (whence l = 2p+1 is prime)

or t = 1. But the latter means l = p+1, which is impossible since this

together with l | 2p+1 would imply l = p+1 | p, a contradiction. �
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A prime p such that 2p+1 is a prime too is called Sophie Germain

prime, the first ones of which below 1000 are

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251,

281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719,

743, 761, 809, 911, 953,

It is not known whether there are infinitely many such primes. But if

there were infinitely many Sophie Germain primes p ≡ 3 mod 4 then

we would know that there are infinitely many composite Meresenne

numbers Mp with a prime p.

9. Factorization

Given a positive integer n we want to know

(1) whether n a prime,

and if not,

(2) its factorization into primes.

There are various algorithms for answering these questions. However,

for large n their running time can become too long so that they might

not given an answer in realistic time. One measures the performance

of an algorithm by giving an upper bound for the running time as

function of log2 n, i.e. the number of digits of of the binary expansion

of n, and sometimes in addition by an upper bound in log2 n of the

storage space needed to run the algorithm.

It is known that the question (1) can be solved in polynomial

time. That means that there is an algorithm whose running time

is O (f(log n)) for some polynomial f . This is the Agrawai-Kayal-

Sayema algorithm which was found 2002 by the name three com-

puter scientists. The running time of the original algorithm was

O(log12+ε n) for every ε > 05 Shortly afterwards several improve-

ments to this algorithm were made which reduced the running time

further. However, it should be noted that there are various other

5We use here the Landau O-notation f(n) = O (g(n)) for indicating that there
is a constant C such that |f(n)| ≤ C |g(n)| for all n. The ε enters since actually the

running time of the Agrawai-Kayal-Sayema algorithm is O
(

log12(n) logk(log(n))
)

for

some k > 0.
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primality tests which, for small n, perform better than he Agrawai-

Kayal-Sayema algorithm.

Finally, there are also non-deterministic primality tests like for

example the Fermat primality test. One picks randomly integers a rel-

ative prime to the given n and checks whether an−1 ≡ 1 mod n. If we

find an a for which this congruence does not hold we know that n must

be composite. However, even if all integers below n would pass this

test, we cannot be sure that n is a prime: there are composite Num-

bers such that an−1 ≡ 1 mod n holds for all a relatively prime to n,

these re the so-called Carmichael numbers after Robert Carmichael

who found 1910 the first one (after their basic properties had been

observed before); the first ones are 561, 1105, 1729. It is even know

that there are infinitely many Carmichael numbers (Alford, Granville

and Pomerance, 1994).

In this section we discuss three factorization algorithms, i.e. algo-

rithms which find a proper divisor of a given composite n. Iterating

this algorithm would lead then to a complete factorization into prime

powers.

9.1. Trial division. The most naive algorithm for factoring a given

number n is to try sequentially for divisibility by the consecutive

primes. This is reasonable if n possesses small prime factors. How-

ever, in the worst case nmight be the product of two primes of approx-

imately equal size, and then we would need approximately π(n1/2)

divisions before we encounter a non-trivial divisor of n, where π(x)

is the number of primes ≤ x. If b(n) denotes the number of decimal

digits of n, so that log n1/2 ≈ 1
2b(n) log(10) ≈ 1.15b(n) then, by the

prime number theorem

π(n1/2) ≈ exp (1.15b(n))

1.15b(n)
.

For a number n with 30 decimal which is the product of two primes

of approximately equal size, we would need 2.8× 1013 trial divisions

to identify these two primes.



82 3. Primes and factorization

9.2. The quadratic sieve. Let a positive integer n be given. As-

sume that n is composite and odd. If n = de with non-trivial divi-

sors d, e, then

n =

(
d+ e

2

)2

−
(
d− e

2

)2

,

and d+e
2 and d−e

2 are integers since d and e must be odd. In other

words, the application d 7→ (d+e
2 , −d+e

2 ) defines a bijection from the

set of divisors d of n with d ≤ n/d onto the set of pairs of non-

negative integers (a, b) with n = a2− b2. Hence we could sequentially

try for all integers a ≥ dn1/2e whether a2 − n = b2 for a positive

integer b and if gcd(a + b, n) or gcd(a − b, n) is a non-trivial divisor

of n. (Note that gcd(a + b, n) gcd(a − b, n) = n since n = a2 − b2 so

that it suffices to check one of gcd(a+ b, n) or gcd(a− b, n) for being

a proper divisor of n). Eventually we shall find a proper divisor of n.

For a divisor d of n, we have d+e
2 ≤

1+n
2 since the function y = x+ n

x

is decreasing between x = 1 and x =
√
n. (In particular, if we do

not know whether n is composite we can stop as soon as a > 1+n
2 to

be sure that n is a prime). The worst case for our algorithm would

be that n is a product of a very small and a very big prime, so that

the first pair n = a2 − b2 would be for a ≈ 1+n
2 so that we would

need ≈ 1+n
2 −

√
n steps to find the factorization of n. This is much

worse than trial division. On the other hand, if n is a product of two

primes p < q with, say ∆ := q − p < ε
√
n for some small ε, than our

algorithm stops successfully at

a =
p+ q

2
=

(
n+

(
p− q

2

)2
)1/2

=

(
n+

(
ε
√
n

2

)2
)1/2

≈
√
n

(
1 +

ε2

8

)
,

i.e. already after ≈ ε
8∆ steps.

However, we can improve the above algorithm. Suppose we have

computed kj := a2
j − n for j = 1, . . . , r and none of these numbers

was a square (or at least not a square which led to a proper divisor

of n). Then it might still be that a product of some of the kj is a
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perfect square, say kj1 · · · kjt = b2. Setting a := aj1 · · · ajt it follows

a2 ≡ b2 mod n.

It is clear that gcd(a+ b, n) and gcd(a− b, n) are non-trivial divisors

of n unless a ≡ ±b mod n.

The natural question is how to ensure that we can find a product

of numbers kj which is a perfect square. A hint is given by the

following observation.

Theorem. Let B ≥ 2, and let π(B) + 1 positive integers be given all

of whose prime divisors are ≤ B. Then there exists a subset of these

numbers whose product is a perfect square.

Proof. Let k = π(B) and p1 < p2 < · · · < pk be the primes less

than or equal to ≤ B. To a positive integer a which only contains

the primes pj , say a = pe11 · · · p
ek
k , we associate its exponent vector

mod 2 v(a) := (e1 + 2Z, . . . , ek + 2Z) in Fk2 . This application is a

homomorphism, i.e. v(ab) = v(a) + v(b). In particular, a is a perfect

square if and only if v(a) = 0.

The theorem follows now from elementary linear algebra. The

k+1 exponent vectors mod 2 of the given numbers cannot be linearly

independent, i.e. there is a linear combination not all coefficients 0

which is 0. In other words (since we work over F2) there is subset of

these vectors which sums up to the zero vector, and so the product

of the corresponding numbers is a perfect square. �

A positive integer having only prime divisors ≤ B is called B-

smooth. Using the last theorem we can set up the following algorithm

for factoring:

(1) Choose a B, and examine the numbers x2−n where x runs

through the integers ≥ d
√
ne.

(2) When we have more than π(B) numbers x2 − n which are

B-smooth, form their exponent vectors mod 2 and use linear

algebra over F2 to find a non-empty subset S summing up to

the zero vector. Form the product of the x2−n correspond-

ing to the vectors in S. This product is a perfect square,
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say b2. Let a denote the product of the x in the x2−n with

exponent vector mod 2 in S. We have a2 ≡ b2 mod n.

(3) If a 6≡ ±b mod n then output gcd(a+ b, n).

(4) Otherwise return to Step (2), find new subsets S, and if

this does not lead to a proper divisor, return to (1) for find-

ing new B-smooth x2 − n and attempt once again Step (2)

and (3).

There are various algorithmic issues: (i) what is the best choice

for B, (ii) how can we effectively find subsets S as in (2), and (iii) how

can we effectively recognize B-smooth numbers. We shall not discuss

in depth the first and second problem. But note that a reasonable

choice for B is important. If B is too small then B-smooth x2 − n
will be rare (or do not exist at all) and we have to investigate many

more numbers than for a bigger choice. On the other hand a too

big B might lead to a long running time for each specimen x2 − n to

be identified as B-smooth or not. For answering the second issue one

can, of course, apply Gaussian elimination, but there are also other

variants in the literature which might be faster. We discuss the third

problem.

For (iii) we can apply successively trial division to the numbers

f(l) = (d
√
ne+ l)2−n (l = 0, 1, 2, . . . ) until we found more than π(B)

B-smooth numbers. This can be done within a reasonable amount of

computing time since we only have to check for prime factors below B,

and if we choose B not too big. However, a much faster method is to

apply the quadratic sieve which gives the name to the whole factoring

algorithm. This sieve works as follows.

(1) Create a list S = [f(0), f(1), . . . , f(N)] for some N (whose

size will depend on B).

(2) for all primes p ≤ B do the following: for all t = 1, 2, . . .

solve f(x) ≡ 0 mod pt to obtain all solutions 0 ≤ aj < pt

of this congruence. If there is no solution or no solution

aj ≤ N restart with the next prime; otherwise replace the

entry S[aj + ptk] (k = 0, 1, . . . ) by S[aj + ptk]/p.

After the sieve is run the l such that S[l] = 1 are exactly those 0 ≤
l ≤ N such that f(l) is B-smooth. There are several improvements
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which one could try like for example generating the exponent vectors

mod 2 during sieving. A straight forward implementation could look

as follows.

Algorithm: Sieving for B-smooth vectors

def qs ( n , B = 100 , N = None ) :

”””

Return a l i s t o f a l l B−smooth xˆ2−n

among the f i r s t N many x>= nˆ{1/2} .

”””

w = c e i l ( s q r t (n) )

f = lambda l : (w+l )ˆ2−n

i f not N: N = pr ime pi (B) ∗100

S = [ f ( l ) for l in range (N) ]

for p in primes (B) :

i f not Mod(n , p) . i s s q u a r e ( ) :

continue

t = 1

while True :

k = Mod(n , pˆ t ) . s qua r e roo t ( )

r oo t s = [ ( k−w) . l i f t ( ) ]

i f p != 2 or (2 == p and 2 == t

) :

r oo t s += [ (−k−w) . l i f t ( ) ]

e l i f t >= 3 :

roo t s += [ ((1+2ˆ( t−1) ) ∗k−w

) . l i f t ( ) , (−(1+2ˆ( t−1) )

∗k−w) . l i f t ( ) ]

i f min( r oo t s ) >= N: break

for r in r oo t s :

k = 0

while r+k < N:

S [ r+k ] /= p
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k += pˆ t

t += 1

return [ (w+l , f ( l ) ) for l in range (N) i f

S [ l ] == 1 ]

As stated the quadratic sieve algorithm is deterministic in the

sense that, once the parameter B is fixed, it will always output the

same result. It might, however, stop without any result. To avoid this

one could try to successively increase N . However, even this would

not yield necessarily a result. For turning it into a rigorous algorithm

(i.e. an algorithm that - apart from running out of time - would in

theory eventually yield a factorization) we would have to test all B-

smooth products which can be deduced from N , increase B and N if

there is no result and restart. By what we saw above we would then

(at least) eventually find a solution n = a2−b2 with gcd(a+b, n) being

proper divisor of n, but we expect to succeed in general earlier with

one of the products formed after the sieving process. In the literature

the interested reader can find discussions about the running time of

the quadratic sieve.

Example. We apply the quadratic sieve to factor

n := F6 = 264 + 1 = 18, 446, 744, 073, 709, 551, 617.

If we run qs( 264 + 1, B = 1000, N = 5120000) we find 240 B-

smooth x2 − n among the first 5,120,000 many

x ≥ d264 + 1e = 9, 223, 372, 036, 854, 775, 809.

This is more than enough for a first trial to factor since π(1000) = 168.

The matrix M whose rows are the exponent vectors mod 2 of these

x2 − n has rank 87 and the (left) kernel has therefore dimension 153.

This provides us with 2153 − 1 pairs a, b such that a2 ≡ b2 mod n.

Picking randomly one of the vectors in the left-kernel of M gives us

2, 655, 324, 205, 858, 794, 8112 ≡ 16, 753, 529, 892, 594, 067, 1062 mod n,

and gcd(a− b, n) = 274177. We thus obtain the factorization

F6 = 274, 177 · 67, 280, 421, 310, 721.

Both factors are in fact primes.



9. Factorization 87

9.3. Pollard’s ρ algorithm. The second factorization algorithm is

particularly suited for composite numbers n which have a small prime

factor. It is based on the following idea. Let f(x) be a polynomial

with integer coefficients. The natural map x 7→ f(x) defines a map

from Z/nZ onto itself. Let us fix for the following an element x of

Z/nZ. Since Z/nZ is finite there must be integers 0 ≤ k < l such that

fk(x) = f l(x). Here fk means the k-old composition f ◦ · · · ◦ f (and

f0 is the identity). It is natural to ask for a non-trivial upper bound

for l in terms of n. The following theorem gives us some heuristics

for the size of l which we can expect.

Theorem (Birthday problem). Let x0, x1, x2, . . . be uniformly ran-

domly (and independently) chosen from {0, 1, · · · , n − 1}, and let l

be the smallest index such that xk = xl for some k < l. Then the

expected value of l is asymptotically equal to
√
πn/2.

Proof. We have

Pr(l > s) =
(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− s

n

)
for the probability that l > s, i.e. that the terms x0,. . . ,xs are pairwise

different. Moreover,

E(l) =

n∑
s=0

sPr(l = s)

=

n∑
s=0

s [Pr(l > s− 1)− Pr(l > s)] =

n−1∑
s=0

Pr(l > s).

Inserting the formula for Pr(l > s) gives

E(l) =

n−1∑
s=0

(n− 1)(n− 2) · · · (n− s)
ns

It can be shown (N-E. Fahssi, 2008, corrected by Vaclav Kotesovec,

2012) that E(l) ∼
√
πn/2. �

Suppose p is a non-trivial divisor of n which is small in comparison

to n. Denote by r(x) the reduction of x modulo p, and let l′ denote the

smallest positive integer such that there is a repetition in the sequence
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fh (r(x)) (0 ≤ h ≤ l′). According to the theorem and assuming that

the sequences one would therefore expect that

l′ ≈
√
πl′/2 < l ≈

√
πl/2.

But then we would have r
(
f l
′
(x)
)

= r
(
fk(x)

)
for some k < l′,

whereas f l
′
(x) 6= fk(x). Consequently, p|d := gcd(f l

′
(x)−fh(x), n) <

n, and so d is a proper divisor of n.

These ideas leads to the following naive algorithm for finding a

proper divisor of a given n.

(1) Choose a polynomial f and an initial value x in Z/nZ.

(2) For each integer l′ = 1, 2, . . . compute f l
′
(x) and gcd(f l

′
(x)−

fk(x), n) for 0 ≤ k < l′, and if one these gcds, say d, is dif-

ferent from 1 then stop.

The procedure will eventually stop. If d = n, i.e. if the factorization

did not succeed then we might try again with different f and x.

Though gcds are quickly computed the number of computed gcds

after step l′ equals l′(l′−1)/2, i.e. it grows quadraticly in l′. Moreover,

we would have to store all the computed values fk(x). The following

theorem provides an essential improvement.

Theorem (Floyds cycle detection method). Let x0, x1, . . . be a series

which is periodic from a certain index on, and let l be the smallest

positive integer such that xh = xl for some 0 ≤ h < l. Then there

exists an 0 < i ≤ l such that xi = x2i.

Proof. Setting w = l − h we have xi = xj for all i, j ≥ h such that

i ≡ j mod w. Since w divides i := l − (h mod w) and i ≥ h we have

x2i = xi. �

Thus, to recognize that a given sequence becomes eventually pe-

riodic it suffices to compare successively the terms xi and x2i. For

the preceding algorithm it means that if there is an l′ such that

the gcd(f l
′
(x) − fk(x), n) 6= 1 for some 0 ≤ k < l′, then there

is also an i ≤ l′ such that gcd(f2i(x) − f i(x), n) 6= 1. Namely,

d := gcd(f l
′
(x) − fk(x), n) 6= 1 means that f l

′
(x̃) = fk(x̃), where
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x̃ is the reduction modulo d of x, and then we can apply the preced-

ing theorem which ensures the existence of the claimed i. We hence

replace (2) in the above algorithm by

(2)’ For each integer i = 1, 2, . . . compute d = gcd(f2i(x) −
f i(x), n). If d > 1 stop.

The algorithm (1) and (2’) is the algorithm mentioned in the title

of this section (the directed graph consisting of the values f i(x) as

vertices and directed edges from f i(x) to f i+1(x) looks like a ρ, which

explains the word ρ in the algorithm’s name).

It is amazingly easy to implement this algorithm, for example as

follows.

Algorithm: Pollard’s rho factorization

def prho ( n , f = lambda x : xˆ2+1 , i v = 2) :

”””

Return a d i v i s o r o f n .

”””

x = y = Mod( iv , n ) ; d = 1 ; ct = 0

while 1 == d :

x = f ( x )

y = f ( f ( y ) )

d = gcd ( x − y , n)

ct += 1

return ct , d

Example. For n = F9 = 2512 + 1 (which has 155 decimal digits),

prho( n) yields the results (1563, 2424833), i.e. it finds the divisor

2, 424, 833 of F9 after 1, 563 iterations.

It can be worthwhile to try other polynomials f . For example

prho( 2512 + 1, f = lambda x : x4 + 1) returns (425, 2424833),

i.e. we find a divisor after only 425 iterations, and prho( 2512 + 1,

f = lambda x : x8 + 1) yields even (174, 2424833).

The interested reader can verify that the choice f(y) = y + 1 for
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f and x = 0 for Pollard’s ρ algorithm is nothing else but the trial di-

vision algorithm (where we would inspect here, however, successively

all numbers and not only primes for being divisors of n).

10. Applications in Cryptography

Many cryptosystems are based on the practical impossibility to fac-

tor large integers or to compute general discrete logarithms. Given

a group G (like for example the group of primitive residue classes

modulo n) the discrete logarithm problem for G asks for an efficient

method to solve, for given a and b in the group, the equation ax = b

in x. We shall discuss here the first two of such cryptosystems: RSA

and Diffie-Hellman key exchange.

10.1. RSA. The RSA cryptosystem, discovered 1977 by Ron Rivest,

Adi Shamir, and Leonard Adleman, answers the following question.

Is it possible to encipher messages with a publicly known key (and

publicly known algorithm) in a way that only the one who issued the

public key can decipher it? The practical interest in such a system is

immediate. A person issues a public key and he will be the only one

who can read those of his received emails which are enciphered with

the public key. Or the public key can be used to verify the identity of

the issuer by encrypting a message and testing whether the recipient

can decipher it.

RSA works as follows. A person A chooses two big primes p and q,

computes n = pq, and chooses then an exponent e relatively prime

to ϕ(n). He publishes then as his public key, the pair (n, e). He does

not publish the factorization of n or ϕ(n), which are his secrets. A

person B who wants to send an encrypted message to A proceeds as

follows. He cuts the message (which we might imagine as a sequence

of digits to some fixed base) into pieces m1,m2, . . . all of which have

the same length which is chosen such that 0 ≤ mj < n. He computes

than

cj ≡ me
j mod n, 0 ≤ cj < n.

The sequence c1, c2, . . . is then the encrypted message which he sends

to A. A person who wants to decipher this message needs to solve cj ≡
xe mod n for each j. This is called the RSA problem. As we shall see
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in a moment the map ()e : Z/nZ→ Z/nZ is indeed injective so that

x = mj is the only solution. The security of the RSA cryptosystem

is based on the assumption that the most efficient procedure to solve

cj ≡ xe mod n is to calculate ϕ(n), and then d such that ed ≡ 1 mod

ϕ(n) (recall that e was chosen relatively prime to ϕ(n)). Namely then

cdj ≡ xed ≡ x mod n.

The second congruence, for x relatively prime to n, follows on writing

ed = 1 + tϕ(n) for some integer t, and using Euler’s theorem which

ensures xϕ(n) ≡ 1 mod n. We leave it to the reader to show that

the congruence xed ≡ x mod n remains true if x is not relatively

prime to n. The exponent d is quickly calculated using the extended

Euclidean algorithm. However, for this we need ϕ(n), which is kept

as a secret by A. Knowing ϕ(n) is essentially equivalent to knowing

the factorization of n. Indeed, ϕ(n) = (p− 1)(q − 1), and if we know

ϕ(n) we can calculate p and q as zeros of

(y − p)(y − q) = y2 + (ϕ(n)− n− 1)y + n = 0,

i.e. as

p, q =
−ϕ(n) + n+ 1±

√
(ϕ(n)− n− 1)2 − 4n

2
.

10.2. Diffie-Hellman key exchange. This cryptosystem, published

1976 by Whitfield Diffie and Martin Hellman and based on work of

Ralph Merkle’s to conceptualize public key cryptography, solves the

following problem: Is it possible for two persons to agree on a secret

key, known only to these two persons, via a public dialogue which can

be followed by whoever might be interested? Again the practical im-

pact is immediate: for example encrypted data should be exchanged

between two systems which have to agree before the exchange over a

public channel on a secret key for en- and deciphering.

The DH key exchange protocol works as follows. Person A and B

agree on a prime p and an integer h not divisible by p. Then person A

chooses an integers a and B chooses an integer b, respectively, which

they do not communicate. But A sends to B the remainder hA of ha

after division by p, and B sends to A the remainder hB of hb after
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division by p. The secret key is

k ≡ hbA ≡ haB mod p, 0 ≤ k < p.

A and B are the only persons who can compute haB and hbA, respec-

tively since only A knows a and only B knows b. The numbers p,

h, hA and hB are known by everybody who followed the exchange

protocol.

For obtaining the key from the publicly available informations

one needs to solve ha ≡ hA for a or hb ≡ hB for b. In other words,

one needs to be able to compute the discrete logarithm x from a given

identity hx ≡ y mod p. No efficient algorithm is known to compute

the discrete logarithm for large p and carefully chosen a. Nevertheless,

there are several algorithms which can be used and give quick answers

if p is not too big. As example we discuss Pollard’s ρ-algorithm for

the discrete logarithm.

10.3. Pollard’s ρ-algorithm for the discrete logarithm. Sup-

pose integer a is relatively prime to N and we want to solve, for a

given integer y the congruence

y ≡ ax mod N.

We assume that such a solution exists (which is for example always the

case if a is a primitive root modulo n and y is relatively prime to N).

Let n be the order of a modulo N . For solving y ≡ ax mod N we

choose a function f from X := Z/nZ×Z/nZ onto itself and an initial

value ([u0], [v0]) in X. (We use [u] as abbreviation for the residue

class u + nZ.) We compute successively the term of the sequence

([uk], [vk]) = fk([u0], [v0]) of iterates of f until we find an l such that

aukyvk ≡ aulyvl mod N

for some 0 ≤ k < l. Replacing y by ax, it follows

uk + xvk ≡ ul + xvl mod n.

If this equation is solvable, i.e. if g := gcd(vl− vk, n) divides gcd(ul−
uk, n), there will be g solutions, and if g is not too big we can quickly

identify the solution x we are looking for. modulo n.

We might hope, for a proper choice of f and the start value

([u0], [v0]), that the sequence xk := aukyvk is uniformly randomly
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(and independently) chosen from the cyclic group of order n gener-

ated by a. We can then apply the theorem on the birthday problem

from Section 9.3 to conclude that the expected running time for the

described algorithm is not worse than approximately
√
πn/2. For de-

tecting one of the desired pairs k < l we apply Ford’s cycle detection

method from Section 9.3. An implementation can now be done as

follows.

Algorithm: Pollard’s rho-algorithm for the discrete

logarithma

def prhodl ( N, a , y , i v = (1 , 0 ) , F =

PrhoDL f , bound = I n f i n i t y ) :

”””

Return $x$ so t h t $aˆx \ e q u i v y bmod n$

.

”””

a = Mod( a ,N) ; y = Mod(y ,N)

f = F( a , y ) .map

n = a . m u l t i p l i c a t i v e o r d e r ( )

u , v = iv ; u , v = U,V = Mod(u , n) , Mod(v , n

)

ct = 0

while ct < bound :

ct += 1

u , v = f ( ( u , v ) )

U,V = f ( f ( (U,V) ) )

i f aˆu ∗ yˆv == aˆU ∗ yˆV:

return ct , −(U−u) , V−v

return ’ Fa i l ed : c t = %d ’ % ct

aNote that we implemented the function f here as a method map() of a class
PrhoDL f. The reason is that the function might need to know about N and
a, and we provide this information by creating an appropriate instance of
this class after the call of prhodl.
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The function f is on the original algorithm constructed as fol-

lows. One partitions Z/NZ into three subsets S0, S1 and S2 of ap-

proximately equal size, and defines

f([u], [v]) =


([u], [v + 1]) if auyv represents a class in S0,

([2u], [2v]) if auyv represents a class in S1,

([u+ 1], [v]) otherwise.

The partitioning can be achieved by a function P : Z/NZ→ {0, 1, 2}
and letting Sj be the set of preimages if j. Then auyv represents a

class in Sj if P (r(auyv)) = j, where r denotes reduction modulo N .

For the function P one might take for example the residue class mod-

ulo 3 of the smallest positive integer in a given residue class. The

above algorithm would then be completed by

Algorithm: A function f for Pollard’s rho-algorithm

for the discrete logarithm

class PrhoDL f :

”””

Class p r o v i d i n g the f u n c t i o n f o r our

implementat ion o f

P o l l a r d rho f o r d i s c e t e l o g .

”””

def i n i t ( s e l f , a , y ) :

s e l f . a = a

s e l f . y = y

s e l f .P = lambda c : c . l i f t ( )%3

def map( s e l f , x ) :

u , v = x

j = s e l f .P ( s e l f . aˆu ∗ s e l f . yˆv )

i f 0 == j : return u , v+1

i f 1 == j : return 2∗u ,2∗ v

i f 2 == j : return u+1,v
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Example. We consider the prime N = 1, 299, 709 and the prim-

itive root a = 6. The call prhodl( N,a,1000) returns the triple

(1389, 1158192, 216264). The equation 1158192 ≡ 216264x mod N−1

has 12 solutions, namely 5907 + tN−1
12 (t mod 12). For

x = 5907 + 6 · N − 1

12
= 655, 761,

we find ax ≡ 1000 mod N .

It is worthwhile to try different initial values, for example, prhodl(

N,a,1000, iv = (13,1111)) finds x after 440 steps, and prhodl(

N,a,1000, iv = (100,100)) already after 110 steps.





Chapter 4

Diophantine equations

11. Introduction

A diophantine equation is an equation of the form

f(x1, . . . , xn) = 0,

where f(a1, . . . , xn) is a polynomial in a number n of unknowns with

integer coefficients, and where we seek for integral or rational solu-

tions. Many classical problems lead to questions for the solubility or

a description of all solutions of diophantine equations.

Example. We want to determine all right triangles whose side lengths

are integral or rational. Pythagoras’s theorem tells us that our prob-

lem is equivalent to solving the diophantine equation

a2 + b2 = c2

(i.e. the diophantine equation f(a, b, c) := a2 + b2 − c2 = 0). The

integral solutions of this equation are called Pythagorean triples. We

shall describe them all in later sections.

Example. We want to determine all natural numbers n ∈ Z≥1 which

occur as the area of a right triangle with rational side lengths. Such

integers are called congruent numbers. By basic theorems from Eu-

clidean geometry a positive integer n is a congruent number if the

97
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following system of diophantine equations is solvable in rational num-

bers a, b, c:

n =
ab

2
, a2 + b2 = c2.

(Note that if this equation has a solution then it has also a solution

with a, b, c all three positive).

One can always reduce a system of diophantine equations like the

previous one to a single equation. Namely, the system of equations

f1 = f2 = · · · = fr = 0 has obviously the same rational or integral

solutions as the single equation f2
1 + f2

2 + · · ·+ f2
r = 0. However, this

is more a theoretical remark. In practice there are better methods

to treat systems of diophantine equations. In our case the reader

can for example eliminate the variable b by using that b = 2n/a and

requiring that the resulting equation a4 +4n2 = a2c2 has to be solved

in rational number a, c. We shall also come back to the congruent

number problem in later chapters.

In the following we shall discuss various types of diophantine

equations. However before going into details we would like to emph-

esize that diophantine equations belong to the very heart of mathe-

matics. For the student who encounters them first they might seem

to be merely a challenging exercise. However this is far off the truth.

We indicate two aspects of this in the following two subsections.

11.1. Hilbert’s tenth problem. In a sense every subset of objects

in a given set of countably many objects which can be enumerated by

some effective procedure (like the subset of prime numbers in the set

of all positive integers or the subset of solvable groups in the set of

all finite groups) can be encoded by a suitable family of diophantine

equations. Thus a huge part of mathematics or computer science is

equivalent to the question of solubility of diophantine equations. This

is the philosophical interpretation of Matiyasevich’s Theorem. This

theorem answers also the tenth of Hilbert’s 23 problems which Hilbert

proposed on the second International Congress of Mathematics, which

took place 1900 in Paris, as the outstanding mathematical problems

of the coming century.
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Hilbert’s tenth Problem. Given a Diophantine equation with any

number of unknown quantities and with rational integral numerical

coefficients: To devise a process according to which it can be deter-

mined in a finite number of operations whether the equation is solvable

in rational integers.

The notion of process as Hilbert called it or, as we say today,

algorithm is meanwhile, after a huge amount of work in fundamental

research in mathematics during the first part of the 20th century,

rather well understood. This research is connected to names like

Gödel, Turing, Neumann, Church and many others1.

In particular, we have a mathematical precise notion of recursive

sets. These are those subsets B of the set of non-negative integers

Z≥0 for which there exists an algorithm which decides for a given

integer n ≥ 0 whether it belongs to B or not. The notion algorithm,

and thus recursive set, has been defined in many different ways. For

instance we might define B to be recursive by requiring that we can

write a program in our favorite programming language which takes

as input an integer n ≥ 0 and outputs True if n belongs to B and

False otherwise. However, all definitions have been proven to describe

exactly the same family of subsets of Z≥0. This led in the end to

what is called Church-Turing thesis: A function Z≥0 → Z≥0 (like

the characteristic function of a set B) is computable by a human

being ignoring resource limitations if and only if it is computable by

a Turing machine.

A related notion is the notion of a recursive enumerable set. These

are subsets A of Z≥0 for which there is an algorithm (e.g. a Turing

machine) which enumerates A. We might think of such a set as semi-

decidable in the sense that, given an integer n ≥ 0, we will know after

running our algorithm and waiting long enough that n is in A once

it is output by the algorithm; on the other hand if we do not get an

answer after a certain time we can never be sure that n is not in A.

A set B is recursive if and only if B and the complement Z≥0 \ B
are both recursively enumerable.

1These mathematical-philosophical considerations which led amongst others to
the exact notion of algorithm are in a certain sense the basis of the social changes
caused by the increasing digitization of information and automatizing of procedures.
On the other hand, fundamental research is also not independent of social changes.
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Back to diophantine equations we define

Definition (Diophantine Set). A subset A ⊂ Z≥0 is called diophan-

tine, if there exists a polynomial f(x1, . . . , xr, y) with integer coeffi-

cients such that

A = {n ∈ Z≥0 | ∃x1, . . . , xr ∈ Z : f(x1, . . . , xr, n) = 0} ..

Sometimes in the definition of diophantine sets the quantification

over all integers is replaced by a quantification over all non-negative

integers. However, these two definitions are equivalent. Namely,

if a polynomial f(x1, . . . , xr, y) is given we can easily construct a

polynomial g(x1, . . . , xr, y) such that, for a given n, the equation

f(x1, . . . , xr, n) = 0 is solvable in integers yj if and only if the equation

g(x1, . . . , xr, n) = 0 is solvable in non-negative integers: for example,

one can take g(x1, . . . , xr, y) =
∏
ε f(ε1x1, . . . , εrxr, y), where ε runs

through all vectors of length r with ±1 as entries. Vice versa, if, for

a given g(x1, . . . , xr, y), we set

f(y1, z1, v1, w1. . . . , yr, zr, vr, wr, y)

= g(y2
1 + z2

1 + v2
1 + w2

1, . . . , y
2
r + z2

r + v2
r + w2

r , y),

then f(. . . , n) = 0 is solvable in integers if and only if g(. . . , n) is solv-

able in non-negative integers. For proving latter equivalence we use

Lagrange’s four-square theorem, which states that every non-negative

integer can be written as sum of four squares.

Another equivalent definition is that a set is diophantine if it

equals the set of all non-negative integers assumed by polynomial h

with integer coefficients for integer values of its variables. Indeed

n = h(xi1, . . . , xn) if and only if n − h(xi, . . . , xn) = 0 is solvable in

xj . On the other hand, if a diophantine set A is given as in the above

definition then the condition of solubility of f(x1, . . . , xr, n) = 0 in

integers xj is equivalent to

∃x1, . . . , xr+4 ∈ Z : n =
(
x2
r+1 + x2

r+2 + x2
r+3 + x2

r+4 + 1
)
×

×
(
1− f(x1, . . . , xr, xr+1 + x2

r+2 + x2
r+3 + x2

r+4 + 1)2
)
− 1.

It is easy to write a computer program which enumerates a dio-

phantine set. For example we can write a program which tries all pos-

sible values for n, x1,. . . , xr, in increasing order of the sum of their
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absolute values, and prints n whenever f(x1, ..., xr, n) = 0. Much

more involved is the prove of the inverse statement, whose proof was

finally accomplished by Yuri Matiyasevich based on earlier work of

Julia Robinson, Martin Davis and Hilary Putnam.

Theorem (Yuri Matiyasevich, 1970). Every recursive enumerable set

is diophantine.

We encountered already a diophantine set, namely the set of con-

gruent numbers. As we saw this is the set of all positive integers such

that a4 + 4n2 − a2c2 = 0 has rational solutions a, c, or, equivalent,

such that a4 +4n2t4−a2c2 = 0 has integral solutions a, c, t with t 6= 0.

(For fulfilling literally the definition of diophantine set the reader may

verify that the given conditions on n are equivalent to

∃a, c, x1, . . . x4 ∈ Z : a4 + 4n2(x2
1 + x2

2 + x2
3 + x2

4 + 1)− a2c2 = 0.

(If the xj run through all integers then x2
1 + x2

2 + x2
3 + x2

4 + 1 runs

through all positive integers as follows from Lagrange’s four square

theorem cited above.) We leave it to the reader to incorporate the

additional condition that n should be positive, and to find other ex-

amples. Matiyasevich’s theorem gives a philosophical reason for this.

The reader might want to look up as a non-trivial example a descrip-

tion of the set of prime numbers as diophantine set.

Matiyasevich’s theorem provides in fact an answer to Hilbert’s

tenth problem.

Corollary (Solution of Hilbert’s tenth problem). There is no algo-

rithm which decides, for a given diophantine equation, whether it is

solvable or not.

For deriving the corollary let A be a recursive enumerable but not

recursive set. Since A is diophantine we can describe it by a poly-

nomial f(x1, . . . , xr, n) as in the definition of diophantine sets. Since

A is not recursive there exists no algorithm which decides whether a

given n is in A, i.e. whether, for a given n, the diophantine equation

f(x1, . . . , xr, n) = 0 is solvable in integers x1,. . . , xr. However, it is

not a priori clear that there exist recursive enumerable which are not

recursive. In mathematical logic it is shown that this is indeed the

case.
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11.2. Relations to geometry. The second indication for the im-

portance of diophantine equations is that they relate arithmetic and

geometry in a deep way which is by far not yet fully explored. If we

admit as solutions of the equation f(x1, . . . , xn) = 0 real numbers we

obtain a geometrical object: a hyper-surface in the affine space Rn.

As example consider the equation x2 + y2 = 1, which defines over the

reals the unit circle in the affine plane. It is wise to admit even com-

plex numbers as solutions: we then obtain complex algebraic varieties

and we are in the heart of complex algebraic geometry. We shall see

that in the case of diophantine equations which define complex curves

the topological properties of these curves already determine the qual-

itative behavior of the set of solutions of the underlying diophantine

equation. Finer information is provided by studying in addition the

congruences f(x1, · · · , xn) ≡ 0 mod p for primes p. We shall get a

glimpse of this when discussing Legendre’s theorem.

12. Diophantine equations in one variable

Consider a polynomial in one variable with integer coefficients

P (x) = anx
n + · · ·+ a1x+ a0.

We want to determine all rational solutions of P (x) = 0 if there are

any. In other words, we look for all integers r and s ≥ 1 such that

P (r/s) = 0. We can assume that the fraction r/s is given in its lowest

terms, i.e. that gcd(r, s) = 1. We can moreover assume that an and

a0 are different from 0 (otherwise omit the terms which are zero and

divide by a suitable power of x).

Writing out the equation P (r/s) = 0 and multiplying by sn we

obtain

anr
n + an−1r

n−1s · · ·+ a1rs
n−1 + a0s

n = 0.

But then s divides anr
n, and since gcd(r, s) = 1, it divides even r.

Similarly we note that r divides a0. We thus have proved

Theorem. One has

{r/s ∈ Q : gcd(r, s) = 1, s ≥ 1, P (r/s) = 0}
⊆ {r/s ∈ Q : r | a0, s | an, s ≥ 1} .
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We have therefore reduced the problem of solving P (x) = 0 in

rational numbers to the computation of the values P (r/s) for the

finitely many rational numbers r/s described in the theorem. There

is an interesting consequence worth to be noted.

Corollary. Assume that P is monic (i.e. that an = 1). Then every

rational solution of P (x) = 0 is integral.

We note a special case of this:

Corollary. Let n be a positive integer which is not a perfect square.

Then
√
n is irrational.

Proof. Indeed,
√
n is a solution of x2 − n = 0. If it were rational

than it would be integral, thus n a perfect square. �

Corollary.
√

2 is irrational.

13. Linear diophantine equations

Next we look at diophantine equations in several variable but restrict

the degree. We start with the degree 1 case, in other words we want

to solve an equation of the form

a1x1 + · · ·+ anxn = b

in integers xj . The coefficients aj and b are as usual assumed to be

integers and the aj are not all zero. We could also look for rational

solutions, but this problem is quickly solved. If, say, an is different

from zero, then the set of solutions in rational numbers equals the the

set of all vectors of the form

(x1, . . . , xn−1, (b− a1x1 + · · ·+ an−1xn−1)/an),

where the xj are arbitrary rational numbers. If we ask for integral

solutions the answer is not so obvious. The next theorem tell us that

we can restrict to such equations where the aj (j = 1, 2, . . . , n) are

relatively prime.

Theorem. The diophantine equation a1x1 + · · ·+anxn = b possesses

a solution in integers if and only if gcd(a1, . . . , an) divides b.
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The theorem was already proved in Section 1. Namely, the given

equation has integer solutions if and only if b is contained in the

ideal generated by the numbers aj , and we have seen that is ideal is

generated by the gcd of the aj .

So we assume that our diophantine equation has solutions. We

can then divide the equation by the gcd of the aj , and the resulting

equation has the property that the aj are relatively prime, which we

assume from now on. The question remains how to find and describe

the solutions.

Let us assume for a moment that n = 2. We have seen in Section 1

that the extended Euclidean algorithm gives generates a solution x
(0)
1 ,

x
(0)
2 of a1x1+a2x2 = b. It is now easy to obtain from this all solutions.

Theorem. The integral solutions of the equation a1x1 +a2x2 = b are

given by

x1 = x
(0)
1 − ta2, x2 = x

(0)
2 + ta1,

where t runs through the integers.

Proof. If x1 and x2 are solutions then a1(x1−x(0)
1 )+a2(x2−x(0)

2 ) =

0. It follows that a2 divides a1(x1 − x(0)
1 ), and since a1 and a2 are

relatively prime, that a2 divides in fact x1−x(0)
1 . Therefore x1−x(0)

1 =

aa2 for some integer t. Similarly, x2 − x(0)
2 = ta1 for some integer u.

From a1(ta2) + a2(ua1) = 0 we obtain s = −t. Vice versa it is clear

that any pair x1, x2 of the given form provides a solution. �

For extending the last theorem to more tan two variables it is

useful to reformulate it in a slightly different form. For this we can

assume that x
(0)
1 = bu1, x

(0)
2 = bu2 with integers u1, u2 satisfying

a1u1 + a2u2 = 1. We can write then the general solution of a1x1 +

a2x2 = b in the form

(x1, x2) = (b, t)

[
u1 u2

−a2 a1

]
.

The matrix has determinant 1, its inverse is
[
a1 −u2
a2 u1

]
. Vice versa one

verifies that for any matrix U with integer entries, determinant 1 and

a1, a2 in the first column equal, the vector (b, t)U−1 runs through all
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solutions of our equation when t runs through Z. This is in fact true

for any number of variables.

Theorem. Let U be an n × n-matrix of determinant ±1 and with

(a1, . . . , an)′ as first column2. Then a vector (x1, . . . , xn) is an integral

solution of the equation a1x1 + · · · + anxn = b if and only if it is of

the form

(x1, . . . , xn) = (b, t2, . . . , tn)U−1,

where t2,. . . , tn are integers.

Proof. If (x1, . . . , xn) is of the given form then the xj are integers.

For this we have to verify that U−1 has integers as entries. But this

follows from the formula U−1 = det(U)−1U∗, where U∗ is the adjunct

of U . Thus, if (x1, . . . , xn) is of the given form it has integral entries

and satisfies (x1, . . . , xn)U = (b, t2, . . . , tn), in particular, (x1, . . . , xn)

multiplied with the first row of U equals b. But this product is by

assumption nothing else but a1x1 + · · ·+ anxn.

Vice versa, if (x1, . . . , xn) is a solution, then (x1, . . . , xn)U =

(b, t2, . . . , tn) for suitable integers tj . �

It remains the question whether such a matrix as in the theo-

rem always exists and how to compute it. For this we note that the

n×n-matrices with determinant ±1 and integral entries form a group,

which is usually denoted by GL(n,Z) with respect to matrix multipli-

cation. This means that for every two matrices U and V in GL(n,Z)

their product and their inverses are in GL(n,Z) too.

Theorem. Let a be an integral primitive3 column vector of length n.

Then there exists a matrix U in GL(n,Z) whose first column equals a.

Proof. The proof will provide also an algorithm for obtaining such a

matrix U . In fact we apply the generalized Euclidean algorithm to a

for obtaining the desired U .

The extended Euclidean algorithm as explained in Section 2.3

generates a sequence of vectors a0 = a, a1, . . . , ak = (1, 0, . . . , 0)′

2For a vector or matrix X we use X′ for the transpose of X.
3An integral vector is called primitive if its entries are relatively prime.
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starting with a and ending with (1, 0, . . . , 0)′. Each aj+1 is obtained

from aj by applying one of the three operations:

(1) Exchange two entries.

(2) Multiply an entry by −1.

(3) Replace the kth entry by the rest after Euclidean division

by the lth entry.

But each of these operations corresponds to a matrix multiplica-

tion from the left: (1) to multiplication by a permutation matrix,

(2) by the diagonal matrix whose diagonal entries are all 1 except for

one which is −1, and (3) to a matrix of the form E + tEkl, where

E is the unit matrix, t an integer and Ekl the matrix which has

a 1 at the k, lth place and 0 at all others. All these matrices are

in GL(n,Z). Thus we have aj+1 = Vjaj for some Vj in GL(n,Z), and

so (1, 0, . . . , 0)′ = Vk−1 · · ·V1V0a. The matrix U = (Vk−1 · · ·V1V0)−1

satisfies then U(1, 0, . . . , 0)′ = a, i.e. it has a as first column. �

It is not hard to transform this algorithm into an algorithm.

Algorithm: Computation of the matrix Ua

def gen U ( a ) :

n = len ( a )

A = matrix ( ZZ , n , n+1, lambda i , j : a [ i

] i f 0 == j else 1 i f j == i+1 else

0)

H, U = A. hermite form ( t rans fo rmat ion=

True )

return U∗∗−1

aWe use here a SAGE method for integer matrices. We form the matrix A
which is our primitive vector a followed by the unit matrix to the right.
A.hermite form( transformation = True) returns matrices H,V such that
H is in Hermite normal form and V is unimodular so that V A = H. Since
H has first row (1, 0, . . . , 0)′ the matrix V −1 has first row a.

Example. We end this section by an example: we want to determine

all solutions of 3x + 5y + 7z = 1. For this we guess a matrix U
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in GL(n,Z) whose first columns equals (3, 5, 7). One can take for

example

U =

3 1 0

5 2 0

7 0 1


The general integral solution of our equation is then

(x1, x2, x3) = (1, t, u)U−1 = (1, t, u)

 2 −1 0

−5 3 0

−14 7 1


= (2− 5t− 17u,−1 + 3t+ 7u, u),

where t and u are integers.

The reader will have noticed the special shape of U , which is due

to the fact that 3 and 5 are relatively prime and can therefore, by

Bézout’s theorem, be completed to an integral matrix with determi-

nant 1. More generally, if relatively prime integers a1,. . . an are given,

and, say, the first r have already gcd 1 we can find a matrix U ′ in

GL(r,Z) with first column equals to (a1, . . . , ar)
′, and then

U =

[
U ′ 0r,n−r

0n−r.r 1n−r

]
(where Or,s denotes the r × s=matrix with all entries 0, and 1n the

n× n-unit matrix) is a matrix in GL(n,Z) whose first column equals

(a1, . . . , an)′.

14. Special quadratic diophantine equations

In this section we discuss diophantine equations of the form f(x, y) =

0, where f is a polynomial of degree 2. Recall that this this means

that f is a linea combination of monomials xkyl with k + l ≤ 2 and

that we have equality for at least one monomial. In fact we shall

restrict here to special f , namely f(x, y) = x2 + y2 − 1, and the

family fn = x2−ny2−1 (n a positive integer). A complete theory for

arbitrary f of degree 2 can be found in Chapter ?? on conic sections.

In this section we shall also encounter for the first time the use of

geometric arguments to solve diophantine problems.
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Figure 1. Diophant’s method of parametrizing the points on
the unit circle by the lines of a pencil.

14.1. Rational points on the unit circle. We consider the dio-

phantine equation

x2 + y2 = 1.

The set of solutions in real numbers is the unit circle in the Euclidean

plane. The set of integral solutions consists merely of the four points

(±1, 0), (0,±1). However, if we ask for rational solutions the ques-

tion becomes much more interesting: there are plenty such solutions

like e.g. (3/5, 4/5), (15/17, 8/17). In fact, there are infinitely many

solutions. The idea to find them all is already describes in a famous

book on diophantine problems which is attributed to Diophant who

lived around 250 AD.

The idea is to consider the pencil through the point (1, 0) on the

unit circle, i.e. the set of lines through this point; see Fig. 1. It is

clear that every line in the plane intersects the unit circle in at most
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two points. A line intersects the unit circle in only one point if it is a

tangent. A line in our pencil through (1, 0) which is different from the

tangent line (the line perpendicular to the x-axis) intersect the unit

circle in exactly one point different from (1, 0). Vice versa, every point

different from (1, 0) lies on exactly one line in our pencil. In other

words, the application which associates to every line of the pencil its

second intersection point with the unit circle defines a bijection.

The lines of our pencil different from the tangent are given by the

equations y = λ(x − 1), where λ runs trough the reals. As we shall

verify in a moment, the slope λ is rational if and only if (x, y) has

rational entries. This will therefore solve our diophantine problems.

The intersection point of y = λ(x − 1) with the unit circle is

quickly computed: Elimination of the variable y gives

x2 + λ2(x− 1)2 = 1 (x 6= 1),

x+ 1 + λ2(x− 1) = 0,

x =
λ2 − 1

λ2 + 1
,

and inserting back this expression for x in y = λ(x−1) then y = −2λ
λ2+1 .

Clearly, if λ is rational so are x and y. Vice versa, if x, y are

rational the formula λ = y
x−1 shows that λ is in Q. We can summarize

our reasoning by the following theorem.

Theorem. One has{
(x, y) ∈ Q2 : x2 + y2 = 1, (x, y) 6= (1, 0)

}
=
{(

λ2−1
λ2+1 ,

−2λ
λ2+1

)
: λ ∈ Q

}
Diophant’s method can obviously also applied to other quadratic

diophantine equations. The reader might try to apply it for example

to the diophantine equation x2 + xy + y2 = 0. However, Diophant’s

method depends on the knowledge of at least one solution for basing

the pencil on it. Such a point does not necessarily exist. In Section 15

we shall give an answer to the question when a solution exist and when

not, and how to compute one.

If we look again at our derivation of the equality of the theorem

we see that we could apply this method also to other fields, not only
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the rational numbers. In particular, we can apply it to the finite

fields Z/pZ, where p is a prime.

14.2. Pythagorean triples. Using the explicit description of the

rational points on the unit circle it is now easy to obtain a complete

description of all solutions of the equation a2 + b2 = c2 in positive

integers. Note that it suffices to determine all primitive solutions,

i.e. all solutions with relatively prime a, b, c since any solution can be

reduced to a primitive one by dividing by its gcd. Also, reducing any

primitive solution modulo 4 shows that a or b must be even (since

otherwise 1 + 1 ≡ c2 mod 4, which is not solvable). Obviously we can

suppose that, say, b is even.

Theorem (Pythagoraen triples). The primitive triples a, b, c of pos-

itive integers satisfying

a2 + b2 = c2, 2 | b

are identical with the triples of the form

a = p2 − q2, b = 2pq, c = p2 + q2,

where p > q > 0 are relative prime integers such that p+ q is odd.

Proof. Suppose a, b, c is a primitive Pythagoraen triples with even

b. Then (ac )2 + ( bc )
2 = 1, and by the theorem of the preceding section

we have a
c = p2−q2

p2+q2 and b
c = 2pq

p2+q2 with relatively prime integers p

and q ≥ 1 (we wrote here λ = p
q ). Since a

c is positive we have also

p > q > 0. Since a, b, c are relatively prime we see that a, c and b, c

must be relatively prime, i.e. ac and b
c are given in lowest terms. From

this we deduce that ta = p2− q2, tb = 2pq, tc = p2 + q2 for a suitable

positive integer t. We show that in fact t = 1. Namely, t divides

p2− q2, 2pq, p2 + q2. But then t divides the sum and the difference of

the first and last number, i.e. t divides 2p2 and 2q2. Since p and q are

relatively prime we conclude t = 1 or t = 2. By assumption b is even,

and hence a and c are odd. But then, for t = 2, from tc = p2 + q2

we deduce that p and q are odd, hence 2pq is exactly divisible by 2,

whereas tb = 2pq implies that 4 divides 2pq, a contradiction. Thus

t = 1, and since c is odd we deduce from c = p2 +q2 that p+q is odd.
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Vice versa, every triple a = p2 − q2, b = 2pq, c = p2 + q2 with

p and q satisfying the given constraints is obviously a Pythagoraen

triples with even b. It is also primitive: if a prime l would divide

p2 − q2, 2pq, p2 + q2, it would divide 2p2 and 2q2, hence would be

equal to 2. But p2 + q2 is odd by assumption, a contradiction. �

a b c

3 4 5

5 12 13

7 24 25

9 40 41

a b c

11 60 61

13 84 85

15 8 17

21 20 29

a b c

33 56 65

35 12 37

39 80 89

45 28 53

a b c

55 48 73

63 16 65

65 72 97

77 36 85

Table 1. The 16 primitive Pythagorean triples with even b
and c < 100

14.3. Pell’s equation. The quadratic equation

x2 − ny2 = 1,

where n is a given positive integer is called Pell’s equation. Over the

reals this equation defines a hyperbola (see Fig. 2). For obtaining the

rational solutions x and y we can proceed as in the case of the unit

circle in Section 14.1 and apply Diophant’s method. If we choose the

pencil y = λ(x− 1) we obtain

x2 − nλ2(x− 1)2 = 1 (x 6= 1),

x+ 1− nλ2(x− 1) = 0,

x =
nλ2 + 1

nλ2 − 1
, y =

2λ

nλ2 − 1
.

When λ runs through the rational numbers (x, y) runs through the

rational solutions different from (1, 0). (If n is a perfect square we

have to exclude the two rational solutions of λ2n− 1 = 0.)

However, Pell’s equation is a bit more interesting than this. The

equation x2 +y2 = 1 has obviously only four integral solutions: (1, 0),

(0, 1), (−1, 0), (0,−1). In contrast to this Pell’s equation possesses

infinitely many integral solutions as soon as n is not a perfect square.

Note that the assumption that n is not a perfect square is necessary
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Figure 2. Hyperbola defined by Pell’s equation x2−2y2 = 1.
The dots represent some integral solutions.

here. We leave it to the reader to show that, for n being a perfect

square, say, n = k2, the integral solutions are (1, 0), (−1, 0).

For studying the integral solutions it is useful to represent a so-

lution (x, y) of x2 − ny2 = 1 by the matrix

M :=

[
x ny

y x

]
.

This matrix has determinant 1, which is equivalent to the fact that

(x, y) are solutions of Pell’s equation. It is quickly checked that the

product and the inverses of any two matrices of this form are again

of this form, and thus yield new solutions. The 2 × 2-matrices with

integral entries and determinant 1 form a group with respect to matrix

multiplication, which is denoted by SL(2,Z).

The set of matrices in SL(2,Z) of the above form are in 1 to 1

correspondence to the integral solutions of Pell’s equation. They form

a subgroup of SL(2,Z), which we denote by Sn. The group SL(2,Z)

is not commutative, but Sn is, i.e. for any two matrices M and M ′

in Sn we have MM ′ = M ′M . The group Sn contains the matrices

[ 1 0
0 1 ] and

[−1 0
0 −1

]
, they have the trace trM = ±2. All other matrices

M in Sn have non-zero entries and | trM | > 2. If we can assure that
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there is at least one matrix M in Sn different from ± [ 1 0
0 1 ], then we

can conclude that Sn is infinite since all the powers Mk are pairwise

different. Namely, Mk = M l for some k ≥ l implies Mk−l = [ 1 0
0 1 ].

But this is possible only for k = l since the eigenvalues of M are the

solutions of λ2 − tλ+ 1 = 0 (t = trM), i.e. the numbers

λ =
t±
√
t2 − 4

2
= x±

√
ny

which cannot be roots of unity if trM2 > 4.

Example. We consider the example x2 − 2y2 = 1. A bit of trying

gives us the solution (3, 2). As we saw all powers of [ 3 4
2 3 ] yield also

solutions.

k 1 2 3 4 5

x, y in [ 3 4
2 3 ]

k
(3, 2) (17, 12) (99, 70) (577, 408) (3363, 2378)

In fact, every solution x, y > 0 is obtained in this way as follows from

succeeding theorem and the obvious fact that there is no solution

x, y > 0 with x < 3.

We shall see in a moment that there exist always positive inte-

gral solutions x, y of Pell’s equation x2−ny2 = 1 (for n not a perfect

square), where positive means that x and y are both positive. How-

ever, we postpone the proof for a moment and prove first of all the

following.

Theorem. Let n be positive and not a perfect square. Let x0, y0 be the

integral solution of x2 − ny2 = 1 with smallest x0 among all positive

integral solutions, and let F be its matrix representation. Then the

powers F k (k ≥ 1) of the matrix F run through all positive integral

solutions.

Proof. For a matrix M = [ x nyy x ] in Sn let λ(M) denote the eigen-

value x+
√
ny of M . It is easily checked that λ(M)λ(M ′) = λ(MM ′),

that λ(M) ≥ 1 if and only if M has non-negative entries (as follows

from |x| > 1 +
√
n|y|???), and that λ(M) = 1 only for M = [ 1 0

0 1 ].

For the matrix F we have λ(F ) > 1. Moreover, λ(F ) is the minimum

of all λ(M) > 1. Indeed, if, for M = [ x nyy x ] with λ(N) > 1, we have

x > x0 then ny2 = x2− 1 > x2
0− 1 = ny2

0 , therefore y ≥ y0, and then

λ(M) > λ(F ).
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Therefore, given a matrix M in Sn with positive entries, we can

find an integer k ≥ 0 such that λ(F )k ≤ λ(M) < λ(F )k+1, i.e.

1 ≤ λ(F−kN) < λ(F ).

Since λ(F ) is minimal among all λ(M) > 1 we conclude λ(F−kM) =

1, i.e. M = F k. �

If x, y is an arbitrary solution with x, y both nonzero, then exactly

one of

M := [ x nyy x ] ,
[−1 0

0 −1

]
M =

[−x −ny
−y −x

]
,

M−1 =
[ x −ny
−y x

]
,
[−1 0

0 −1

]
M−1 =

[−x ny
y −x

]
corresponds to a positive solution. We have therefore

Corollary. In the notations of the preceding theorem, the matrix of

any solution of x2 − ny2 = 1 is of the form
[−1 0

0 −1

]ν
F k for suitable

integers 0 ≤ ν ≤ 1 and k.

Using the language of group theory one could shorten the previous

statement by saying that Sn is the direct group of the cyclic group of

order 2 generated by
[−1 0

0 −1

]
and the infinite cyclic group generated

by F . We shall henceforth call the positive integral solution with

smallest x the fundamental solution.

It remains to show the existence of solutions x, y 6= 0 and the

question how to find the fundamental solution. For this we observe

that we can associate to every matrix A =
[
a b
c d

]
in GL(2,R)4 the

fractional transformation of P1(R) = R ∪ {∞} defined by

ξ 7→ Aξ :=
aξ + b

cξ + d

(with the usual conventions A∞ = a
c and Aξ = ∞ if cξ + d = 05).

We leave it to the reader to verify the following rules. Namely, [ 1 0
0 1 ]

fixes P1(R) element-wise (i.e. that [ 1 0
0 1 ] ξ = ξ for every ξ), and that

A(Bξ) = (AB)ξ. We can use this to characterize the group Sn of

solutions of our equation x2 − ny2 = 1.

4 GL(2,R) is the group of all 2 × 2-matrices with real entries and non-zero
determinant.

5A less ad-hoc and more conceptual approach to this action of SL(2,Z) on the

projective line P1(R) will be given in Chapter ??.
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Lemma. Assume that n is not a perfect square. A matrix A in

SL(2,Z) is in Sn (i.e. represents a solution of x2 − ny2 = 1) if and

only if A
√
n =
√
n.

Proof. Suppose we have, for a given A =
[
x b
y d

]
, the identity A

√
n =√

n. Writing out this identity gives, after clearing the denominator,

x
√
n+ b =

√
n (y
√
n+ d),

from which we infer (using that
√
n is irrational) A = [ x nyy x ], in

particular, that A is in Sn. The inverse implication is obvious. �

Our problem becomes now to find matrices A which leave
√
n

fixed. For this we use the map

φ : P1(R)→ P1(R), φ(ξ) :=
1

frac(ξ)
,

where frac(ξ) is the fractional part ξ − bξc of ξ. Note that

ξ = a+
1

φ(ξ)
=

[
a 1

1 0

]
φ(ξ) (a = bξc).

For a positive integer we write Φl for the l-fold composition of φ and

we let φ0(x) = x.

Lemma. Assume that n is not a perfect square. The sequence ob-

tained by applying φ successively to
√
n becomes periodic. More pre-

cisely, there exists an integer l ≥ 1 such that
√
n, φ(

√
n), φ2(

√
n), . . . , φl+1(

√
n) = φ(

√
n),

Proof. We give here an ad-hoc proof customized to our situation.

(For a more conceptual explanation see Section ??). We claim that

φk(
√
n) is of the form (b +

√
n)/a with integers b and a such that

a|(b2−n). Indeed, this is true for l = 0, and if φk(
√
n) is of the given

form then, setting s := b(b+
√
n)/ac, we have

φk(
√
n) =

1

(b+
√
n)/a− s

= a
as− b+

√
n

n− (as− b)2
,

which is again of the claimed form. Moreover, for k ≥ 1, we have

φk(
√
n) > 1 and 0 > φk(

√
n)′ > −1, where, for rational number u

and v, we use (u + v
√
n)′ = u − v

√
n. This can again be shown

easily by induction. Finally, if we let X be the set of all numbers
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ξ := (b+
√
n)/a with integers a and b such that a|(n− b2) and ξ > 1

and 0 > ξ′ > −1, then φ is injective on X as the reader can verify.

But X is finite: the two inequalities imply ξξ′ < 0, i.e. b2 < n, and

the divisibility condition bounds a. Thus φ permutes the elements of

X and the lemma becomes now clear. �

Theorem. Assume n is not a perfect square. Then the equation

x2 − ny2 = 1 possesses a positive integral solution.

Proof. With the notations as in the lemma we have

√
n =

[
a0 1

1 0

]
φ(
√
n) =

[
a0 1

1 0

] [
a1 1

1 0

]
φ2(
√
n) = . . .

· · · =
[
a0 1

1 0

] [
a1 1

1 0

]
· · ·
[
al 1

1 0

]
φl+1(

√
n),

which, using φl+1(
√
n) = φ(

√
n) and φ(

√
n) =

[
0 1
1 −a0

]√
n, yields

√
n =

[
a0 1

1 0

] [
a1 1

1 0

]
· · ·
[
al 1

1 0

] [
a0 1

1 0

]−1√
n.

The matrix A occurring here has obviously integral entries. Since

a1, . . . , al ≥ 1 the matrix is different from ± [ 1 0
0 1 ]. The determinant

of a matrix of the form [ a 1
1 0 ] is −1, and hence the determinant of

A equals (−1)l. Applying again φ l-many times if necessary we can

assume that l is even, so that A has determinant +1 and is hence

in Sn. But then A represents a solution of x2 − ny2 = 1. Note that

this solution is positive since it equals the first column of the matrix[
a0 1
1 0

]
· · ·
[
al 1
1 0

]
. �

Even more is true.

Theorem. Let l be the smallest positive even integer for which one

has φl+1(
√
n) = φ(

√
n), and let ak :=

⌊
φk(
√
n)
⌋
. Then

F :=

[
a0 1

1 0

] [
a1 1

1 0

]
· · ·
[
al 1

1 0

] [
a0 1

1 0

]−1

is the matrix representing the fundamental solution of x2 − ny2 = 1.
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n x y l

2 3 2 2

3 2 1 2

5 9 4 2

6 5 2 2

7 8 3 4

8 3 1 2

10 19 6 2

11 10 3 2

12 7 2 2

13 649 180 10

14 15 4 4

15 4 1 2

17 33 8 2

18 17 4 2

19 170 39 6

20 9 2 2

21 55 12 6

22 197 42 6

23 24 5 4

24 5 1 2

26 51 10 2

n x y l

27 26 5 2

28 127 24 4

29 9801 1820 10

30 11 2 2

31 1520 273 8

32 17 3 4

33 23 4 4

34 35 6 4

35 6 1 2

37 73 12 2

38 37 6 2

39 25 4 2

40 19 3 2

41 2049 320 6

42 13 2 2

43 3482 531 10

44 199 30 8

45 161 24 6

46 24335 3588 12

47 48 7 4

48 7 1 2

Table 2. Fundamental solutions of equations x2 − ny2 = 1

for all n < 50 not a perfect square with period length l as in

the theorem.

Proof. We have already shown than an l as in the theorem exists

and that the corresponding M yields a solution to x2 − ny2 = 1. It

remains to show that, for every positive solution there is an (even) l ≥
with φl+1(

√
n) = φl(

√
n) such that the matrix A derived from this l

as above corresponds to the given solution. We postpone the main

step in the proof of this to Section ??. However, we can indicate at

this point where this fact comes from.
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For this let x, y be a positive solution of x2 − ny2 = 1. A quick

calculation shows that

0 <
x

y
−
√
n =

1

(x+ y
√
n)y

<
1

2y2
,

where the inequality follows using that x2 = 1 + ny2 > y2, so that

x + y
√
n > 2y. Indeed if we look at the example n =

√
2 we see

that 99
70 −

√
2 < 1

4900 , and 90
70 = 1.41428 . . . ,

√
2 = 1.41421 . . . . As

we shall see in Section ?? the above inequality for x/y means that

the positive solutions x, y provide excellent approximations to
√
n. In

fact, in Section ?? we shall prove much more. Namely, the inequality

|xy − ξ| <
1

2y2 , for a given positive real number ξ, is equivalent to the

fact that x/y is a convergent in the continued fraction expansion of ξ,

which, as explained in the theory of continued fractions, means that

the matrix of x, y equals one of the As as constructed above. �

The last theorem is quickly turned into an algorithm which can

then be used to produce tables like Table 2.

Algorithm: Computation of the fundamental solu-

tion of Pell’s equation x2 − ny2 = 1

def P e l l f s ( n) :

”””

Returns the fundamental s o l u t i o n o f

xˆ2−nyˆ2=1.

”””

U = lambda a : matrix ( ZZ , 2 , [ a , 1 , 1 , 0 ] )

phi = lambda x : 1/( x − f l o o r ( x ) )

w = QQbar( s q r t (n) )

s = phi (w) ; l s t = [w, s ]

k = 2 ; t = phi ( s )

while i s e v e n ( k ) or t != s :

l s t . append ( t )

k += 1 ; t = phi ( t )

c f = map( lambda t : f l o o r ( t ) , l s t )
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M = prod ( U( a ) for a in c f ) ∗U( c f [ 0 ] ) ˆ−1

return M[ 0 , 0 ] ,M[ 1 , 0 ] , len ( c f )−1

Example. We consider the equation x2 − 23y2 = 1. Here we find:

k 0 1 2 3 4 5

φk(
√

23)
√

23
√

23+4
7

√
23+3
2

√
23+3
7

√
23 + 4

√
23+4
7

ak 4 1 3 1 8 −
We compute

F =

[
4 1

1 0

] [
1 1

1 0

] [
3 1

1 0

] [
1 1

1 0

] [
8 1

1 0

] [
4 1

1 0

]−1

=

[
24 115

5 24

]
.

The fundamental solution is therefore (24, 5).

When setting up a table as in the previous example the following

hint might be helpful. It is easy to prove by induction that φk(
√
n)

is always of the form ξ =
√
n+s
t with integers s and t ≥ 1, and such

that t divides n− s2 (see the proof of the above lemma). The key is

to write

φ(ξ) =
1

(
√
n+ s)/t− a

=

√
n+ s+ ta

(n− (s− ta)2)/t
,

where a is the floor of ξ.

Example. The fundamental solutions of Pell’s equation can become

rather large. The fundamental solution of x2 − 1021y2 = 1 has for

example fundamental solution

x = 198723867690977573219668252231077415636351801801

y = 6219237759214762827187409503019432615976684540.

15. Legendre’s theorem

We consider a diophantine equation of the form

ax2 + by2 + cz2 = 0,

where abc 6= 0, and where we pose the problem whether there exists

a non-trivial solution in integers or, equivalently, in rational integers.

The trivial solution is x = y = z = 0. Before stating a complete
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answer we do some reductions. Obviously we can assume that the

integers a, b, c are square-free (if, for example, a = a0a
2
1 with square-

free a0, we can substitute x/a1 7→ x). We can further assume that a,

b, c are relatively prime (by dividing the equation through the gcd of

a, b, c if necessary). We can even assume that the three coefficients

are pairwise relatively prime.

For seeing this assume that a and b have t as gcd. We multiply

our equation by t and make the substitution x/t 7→ x, y/t 7→ y.

Applying this procedure also to b, c and c, a we obtain an equation

with pairwise relatively prime factors. Doing these reduction steps

we arrive at an equation such that abc is squarefree.

Theorem (Legendre). Let a, b, c be integers such that abc is square-

free. The equation ax2 +by2 +cz2 = 0 possesses a non-trivial solution

in integers if and only if the following conditions are satisfied:

(1) There exist a non-trivial solution in real numbers, and

(2) One has
(
−ab
p

)
=
(
−bc
q

)
=
(−ca

r

)
= 1 for all odd primes

p | c, q | a, r | b.

Remark. Note that condition (1) can be quickly checked: we can

find a solutions in real numbers if and only if a, b, c do not all have

the same sign.

As we shall see in the proof the condition (2), for a prime p | c, is

equivalent to the existence of a solution of ax2 + by2 ≡ 0 mod p with

x and y not both divisible by p.
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