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CHAPTER 1

Introduction

Interest in Jacobi forms has increased in recent years due to their numerous ap-
plications to number theory, algebraic geometry and string theory. Computing Jacobi
forms gives direct information on the Fourier coefficients of half-integral weight modu-
lar forms [29], they play a part in the Mirror Symmetry conjecture for K3 surfaces [16]
and a certain type of Jacobi forms can be the elliptic genus of Calabi—Yau manifolds
[19], to name some of these applications.

Our long-term goal is to determine the precise relation between Jacobi forms of lat-
tice index and elliptic modular forms. This would enable the transfer of information
and mathematical tools from one side to the other. Lifts of Jacobi forms to other type of
automorphic forms often have special properties, for example their Fourier coefficients
satisfy simple linear relations [26], or their L-functions satisfy certain vanishing prop-
erties [14]. An intermediate step towards our goal is to develop a theory of newforms
for Jacobi forms of lattice index. While the term “newform” is usually applied to cusp
forms, it is important to define this for Eisenstein series as well, in order to obtain a
complete description.

1.1. Statement of results

1.1.1. Poincaré and Eisenstein series. Eisenstein and Poincaré series are the most
simple examples of modular forms. They are obtained by taking the average of a func-
tion over a group (modulo a parabolic subgroup) and hence are invariant under the group
action by construction. In the context of elliptic modular forms, it is well-known that
they satisfy the important property of reproducing Fourier coefficients of cusp forms un-
der a suitably defined scalar product. Furthermore, Poincaré¢ series generate the space
of elliptic cusp forms [10, §8.2].

Jacobi—Poincaré series of matrix index were used to construct lifting maps between
spaces of Jacobi cusp forms and subspaces of elliptic modular forms [6]. Jacobi-

Eisenstein _ i Ell‘fll' index were used to develop a theory of newforms, which
oes not exist yet for arbitrary Tattice index [14].

0 the best of the author’s knowledge, Poincaré series have not been defined in the
literature for Jacobi forms of lattice index. Let k be a positive integer and let L = (L,f3)
be a positive-definite, even lattice over Z (see Subsection 1.2.2). For every pair (D, r)
in the support of L (1.12) such that D < 0, define the Poincaré series of weight k and
index L associated with the pair (D, r) as the series (2.1).

Tueorem A. The Poincaré series Py p, satisfies the following:

(i) If k > rk(L) + 2, then Py p, is absolutely and uniformly convergent on compact
subsets of © X (L ®z C) and it is a Jacobi cusp form of weight k and index L.
Furthermore, it reproduces the Fourier coefficients of Jacobi cusp forms of the
same weight and index under the Petersson scalar product (1.23).

1

2 fs ),j»@
tw-/ A“-q:
Evarg o

Q’k/’/n;-e .



2) 1. INTRODUCTION

(ii) The Poincaré series Py p,, has the following Fourier expansion:

PiypA1,2) = Z Girp D', r)e((B(r') — D)t + B(r',2)),
(D’.r';)e.wg)p(é)
) <l

where
2

GA\L.I).I'(DI’ r’) ::61'.(D’ r, D” r’) e (_ 1 )kéL(D! = D’! r’) it 1
: - 5 det(L)?

= TR ;

Dive =2 E _hw_ 4n(DD’)z

gl D Fs
c=

X (HL,L'(D9 r, D’! r’) 0 (_] )kHL.('(Da “_r-; D’v r’)) ?

the function 6,(D, r, D', r’) is defined in (2.5), the function J, is the J-Bessel func-
tion of index a and Hy (D, r, D', r") is defined in (2.6).

[ Ea

As a consequence, the set
{Perps 7 €L/L,D € Qyand B(r) = D mod Z}

generates the C-vector space of Jacobi cusp forms of weight k and index L.

The definition of Jacobi—Eisenstein series of lattice index was given for instance in
[1], where some of their properties were studied (such as dimension formulas for their
spanning set and the fact that they are Hecke eigenforms). For every r in L* such that
B(r) € Z, the Eisenstein series of weight k£ and index L associated with r is defined as
the series (1.14).

Tueorem B. The Eisenstein series Ey ., satisfies the following:

(i) If k > “‘%) + 2, then Ey 1, is absolutely and uniformly convergent on compact
subsets of Hx(L®=C) and it is a Jacobi form of weight k and index L. Furthermore,
it is orthogonal to cusp forms of the same weight and index under the Petersson
scalar product.

(ii) The Eisenstein series Ey 1, has the following Fourier expansion:

] .
Eipr(1,2) =5 (011, 2) + (- 1)1, (7.2))

> G D, e ((B) - D)+ B(r,2),
(D ")esupp(L)
D'<0

where 1 , is a theta series as in (1.17),

k(L
(Zﬂ)k_"“{_“—J ik k(L)

% (_Df)k—T—l
2det(L)T (k - %)

X Z o (Hé_(.(r, D', )+ (=1 )kHL_U(—r, D, r’))

(=3

Gk,L.r(D’a I"’) =

and Hy .(r, D', r') is defined in (2.14).

As a consequence, the series Ej; , only depends on » modulo L. We would like to
obtain a closed formula for the Fourier coefficients of Eisenstein series. Lattice sums
similar to Hy .(r, D, r") also arise in the Fourier expansions of Poincaré and Eisenstein
series for vector-valued modular forms and those of orthogonal modular forms [7, 43],
as well as in trace formulas for these types of automorphic forms [39, 25]. Most of the
literature deals with the simplest case, which is equivalent to taking » = 0in L*/L. Even
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for Jacobi forms of scalar index, the authors of [14] compute the Fourier expansion of
Eimo and state that “(the calculation) is tedious (for arbitrary r)”. The mathematical
objects that arise in these calculations are Gauss sums for abelian groups and represen-
tation numbers for quadratic forms. For an introduction to these topics, the reader can
consult [12] and [32, §5], respectively, for example. In Section 2.3, we show that Ej 1 ¢
vanishes identically when & is odd and that, when k is even and greater than @ 42,

the following holds:

Tueorem C. Let the pair (D', r") in the support of L be such that D" < 0. If the rank
of L is even, then

k(L)

2= 1IN =D ol

K D _y i
L (1 - k+ 28, 1) S u(@po(@d P oy (1)

Lyk=1
X l_[ : ( rk)lLl
P20 det(L) I _XI_(P)P 2
and, if the rank of L is odd, then

Gk.go(D'a r')=

—k

k(L)

s (tk(L) 22O (12 — k) (D' Dy ) (DY 151

Giro(D', 1)

k(L)
all

2

5 k—
BZkfrk(é)fl T Ib[)"r“ | [

k(L) 1
XL(1=k+ 1" xy,) ) Hs,,, (@)

dlip

. 7y (2
Tor I —x(Dy,., P)P' 2
1_1 1 - pl—2k+rk(£)

X O 2-2k+rk(L) ( f,,,(k -1).

plD’ det(L)

The quantities appearing in the above theorem are defined in Sections 1.2 and 2.3.
For every r in L*, let N, denote its order in L*/L. The Fourier coefficients of arbitrary
Eisenstein series satisfy the following:

Prorosition D. Suppose that r € L*/L and B(r) € Z. Then

Grro(D',r' +rm), ifB(r,r") € Zand
Z Gk.!:mr(D’a J‘”) = < meZny)

MEZ ) 0, otherwise.

We use this result to compute the Fourier coefficients of Eisenstein series associated
with elements of small order in Examples 2.26-2.29.

1.1.2. Hecke operators and the action of the orthogonal group. Hecke operators
give extra structure to spaces of automorphic forms and they have algebraic interpre-
tations in terms of the underlying surfaces. They can be used to construct equivariant
lifting maps between different types of automorphic forms. Hecke operators acting on
Jacobi forms of lattice index were defined in [1, §2.5] as double coset operators (Defini-
tion 3.2). It was shown there that they preserve spaces of Jacobi forms of fixed weight
and index and that they are Hermitian under the Petersson scalar product. Their ac-
tion on the Fourier coefficients of Jacobi forms was computed and their multiplicative
properties were studied. Furthermore, by studying the L-functions attached to Hecke
eigenforms, a relation between Jacobi forms and elliptic modular forms was formulated
(Remarks 3.15 and 3.16). Explicit lifting maps were also defined in some cases and we
discuss them in Subsection 3.1.2.
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The discriminant module of L is the pair D, = (L*/L, 8 mod Z). It is a finite qua-
dratic module (Definition 1.11). It was shown in [1, §3.1] that the orthogonal group of
- Dy, acts on Jacobi forms of weight k£ and index L from the left (Proposition 3.26).

Prorosition E. The operators arising from the action of the orthogonal group of Dy,
are unitary with respect to the Petersson scalar product.

In particular, since these operators commute with Hecke operators and the spaces
of Jacobi cusp forms of weight k and index L are finite-dimensional, every such space
has a basis of common eigenforms. Furthermore, the orthogonal group of D; acts on
Eisenstein series in the following way: -

Proposition F. For every s in the orthogonal group of Dy,
W(S)Ek,l_..r = Ek.é,.\"l[r)-

In the case of lattices of rank one, reflection maps in the orthogonal group of D, act
on Jacobi forms in the same way that Atkin—-Lehner involutions act on elliptic modular
forms (Example 3.35):

ProrosiTioNn G. For every positive-definite, even, scalar Imﬁce@} the following
equality holds:

{W(sa) 1 8 15 a reflection map in O(Lf,/L,,,)} ={W,:t||m}.

The root lattices D, gga_gd_gﬁg;gl_ﬁi_@ Example 1.6, (3). In Section 3.3, we compute
the Hecke eigenvalues of Jacobi cusp forms of weight k and index D, for small values
of k and odd n. These eigenvalues are listed in Appendix A. We compare them with
the eigenvalues of elliptic modular forms in Table 3.1, in order to verify the conjectured
correspondence between Jacobi forms of odd rank lattice index and elliptic modular
forms from [1].

1.1.3. Level raising operators. Level raising operators are intimately connected to
the theory of newforms. They can also be used to define additive lifting maps between
Jacobi forms and other type of automorphic forms [9, 26]. Level raising operators of
type U(-) arise from isometries of lattices (Definition 4.1).

Tueorem H. Let L, = (Ly,51) and L, = (L,,,) be two positive-definite, even lat-
tices over Z, such that L) ® Q = L, ® Q as modules over Q and there exists an isometry
o of L, into L,. Then U(c) maps Jacobi forms of weight k and index L, to Jacobi forms
of weight k and index L,. Furthermore, if ¢ has a Fourier expansion of the type

bn)= D CoDre(Ba(ra) = D)7 +Ba(rn, 22)),

(D,ra)esupp(Ly)

then U(c)¢ has the following Fourier expansion:

U@pma)= »  CoD,a(r))(Bilr) = D)7 +Bi(ri, ).
(D,r1)esupp(L,;)
U'(ri)eLg

As a corollary, the operators U(-) preserve cusp forms. If L, and L, are as above,
then (o°(L}),/3;) is a sublattice of L, and o : L, — (o(L;),[,) is an isomorphism of
lattices. Conversely, every sublattice (M, ;) of L, gives rise to an isometry of (M, f3,)
into L, given by inclusion. In other words, the above theorem asserts that, given a
positive-definite, even lattice L, for every overlattice L’ of L, Jacobi forms of weight k
and index L’ are Jacobi forms of weight k and index L. Every Jacobi form of index L’
is called an oldform of index L. We obtain the following criterion:
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Lemma L. Let L be a positive-definite, even lattice over Z. If

6= Y, Co(D,nel(B(r) = D)t +p(r,2))

(D,r)yesupp(L)

is a Jacobi form of weight k and index L such that C4(D,r) = 0 for all r not in L'* for
some overlattice L' of L, then ¢ is an oldform.

Level raising operators of type V(-) were constructed in [18] as the images of elliptic
Hecke operators under a certain homomorphism of Hecke algebras, using the relation
between Jacobi forms and orthogonal modular forms. The reader can also consult Def-
inition 4.25 for a classical approach.

TueoreM J. For every | in N, the operator V(l) maps Jacobi forms of weight k and
index L = (L, ) to Jacobi forms of weight k and index L(l) := (L, If). Furthermore, if ¢
has a Fourier expansion of the type

b= D CoD,Ne((B)— D) +B(r2),
(D,r)esupp(L)
then V(I)¢ has the following Fourier expansion:

Ve = 3 a““cé(a—llp, ir’)e((ﬁ(r')—D)r+,rﬁ(r',z)).

(D.r')esupp(L(D) al(f(r)-D.I) Z
ZeL)

As a corollary, the operators V(:) also preserve cusp forms. Level raising operators
satisfy the following commutative properties:

ProrosiTion K (see Lemmas 4.32-4.34). The operators U(-) and V(-) commute with
each other.

THEOREM L (see Theorems 4.36 and 4.37). The operators U(:) and V(-) commute
with Hecke operators and with the action of well-defined reflection maps.

Level raising operators preserve Eisenstein series:

ProposiTion M. For every overlattice L' of L, r in L' /L’ such that f(r) € Z and [ in
N, the following holds:

Vod | VO UL (DB, = > > d By
- e al(IB(x
mis) e
V(‘(jc‘h u_-l o It was shown in [1, §3.3] that “twisted” Eisenstein series (Definition 1.35) form a

kj l Ll:-, 74 _7 basis of Hecke eigenforms for Hecke operators (Theorem 3.11). We obtain a sufficient
condition for twisted Eisenstein series to be oldforms in Theorem 4.40. /) /
Sl ) Mo aedls ““"Z/"[” i
1.2. Preliminaries / 5 o i 457 JM P S

This section contains the notation and elementary theory which are necessary in
order to make the results in this thesis precise. We recall the definition of Jacobi forms
of lattice index, following [1]. We discuss the connection between Jacobi forms and
W‘M, witli e ces from the literature. Finally, we
list some examples. :

Let N,Z,Q, R and C denote the set of positive natural numbers, the ring of rational
integers, the rational number field, the real number field and the complex number field,
respectively. Set S! := {z € C : |z| = 1}. The ring of integers modulo n is denoted by
Zny.
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Consider the branch of the complex square root with argument in (-x/2,m/2]. It
follows that the function z — +/z takes positive reals to positive reals, complex numbers
in the upper half-plane to the first quadrant and complex numbers in the lower half-
plane to the fourth quadrant. Set Z/? := (/2)¥ when k € Z. Let Z denote the complex
conjugate of a complex number z and let R(z) and J(z) denote its real and imaginary
parts, respectively.

Let n in Z have prime factorization up

e

' Py, with u = +1, and let a € Z. The
Kronecker symbol (%) is defined as

k

(8) =] @

i=1
For an odd prime p, the number (%) is the usual Legendre symbol and, when p = 2, it
is equal to O when a is even, to | whena = £1 mod 8 and to —1 when a = +3 mod 8.
Define (%) to be equal to 1 and (:‘31‘) to be equal to sign(a).

For every prime number p, the p-adic valuation for Q is defined as

max{v e N, p¥|n}, ifneZ){0},
Vvp i Q = Z U {00}, vp(n) := {v,(a) — vy(b), ifn=1%¢€Q\{0}and
o, ifn=0.

The greatest common divisor of two integers a and b is denoted by (a, b). Write b || a if
b|aand (b,%) = 1. In sums of the form }},, or 3,,_,, the summation is over positive
divisors only. For an integer n, set e,(x) := e*™/" and e"(x) := e*™"*, Write e(x) = e (x).

The J-Bessel function of index @ > 0 is defined by the following series expansion
around x = 0:

o0 (- 1 )” (_x)En-Hr
1.1 Ja(x)i= _— = -
(D ®) ;mr(n+a+l) 2
For every ¢ in N and m, n in Z \ {0}, define the Kloosterman sum
(1.2) S(m,n;c) = Z e.(ma+na™),
(IEZ:_}

where a~! denotes the inverse of @ modulo c. :

Let Z,, denote the p-adic integers and let || - ||, be the p-adic norm, i.e. || a ||,:=
p“'_ﬂ(ﬂ].

DerniTion 1.1 (Igusa zeta function). Let f € Z,[X;,..., X.]. The Igusa zeta func-

tion of f at p is defined for every s in C with R(s) > 0 as the p-adic integral
im = [ 1@ dx
z,

It was proved in [23] that {(f; p; 5) is a rational function in p~" and hence it has a
meromorphic continuation to all of C.

Let w(-), u(-), o,(-) and £(-) denote the function counting the number of prime di-
visors of an integer, the Mdbius function, the 7-th divisor sum and the Riemann zeta
function, respectively. We define o(n) = O for n in R \ N. Let B, denote the n-th
Bernoulli number and define the n-th Bernoulli polynomial

(1.3) Byii= ) (';)B,,__,-x-f.

J=0
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We remind the reader of the following well-known identity:

(1.4) > ud) = {]’ nsand

0, otherwise.
dn

Let R be a ring. The set of n X n matrices with entries in R is denoted by M,(R).
A matrix A in M,,(Z) is called even if it has even diagonal entries. Denote the group of
invertible matrices in M,,(R) by GL,(R), the group of matrices with positive determinant
by GL, (R) and the group of matrices with determinant equal to one by SL,(R). For
every n X m matrix A, its transpose is denoted by A’.
Let N > | be an integer. A Dirichlet character modulo N is a map y : Z — C which
satisfies the following properties:
e y(x+N)=y(x) forall xin Z,
e y(x) =0if and only if (x,N) > 1,
e y(xy) = y(x)x(y) for all x,yin Z.
For every Dirichlet character y, let o} denote the twisted divisor sum

ot (n) := Z Y(dd'

din
and, for every two Dirichlet characters & and y, set

EX(n) = Yy (2 ) x(d.
¥ (n) dzmlf(d)x()

The Dirichlet L-function of a Dirichlet character y is

L(s, )= Z,\f(n)n“‘ = ]—[ (1-x(p)p™)".
P

n=1

For every positive integer N, set

(o]

Ly(sx) = ), xmn™ = Lis) [ [ =xmp™).

n=1 PIN
(n.N)=1

A discriminant is an integer which is congruent to 0 or 1 modulo 4. For every dis-
criminant D, the function yp := ("—)) is a well-defined quadratic Dirichlet character and
we set Lp() := L(-,xp). A fundamental discriminant is an integer d such that either
d = 1 mod 4 and d is square-free or d = 4n for some n in Z such that » = 2 or 3 mod 4

and n is square-free.

DeriniTion 1.2 (Conductor). Let € and y be two Dirichlet characters modulo F and
N, respectively, with F | N. If y(n) = &(n) for every n in Z(XN}. then y is induced by
&. If y is not induced by any character other than itself, then it is called primitive. It is
well-known that every Dirichlet character y is induced by a primitive Dirichlet character
which is uniquely determined by y. The conductor of y is the period of the primitive
character which induces it.

Let y be a primitive character modulo N and define the Gauss sum

N
GOy i= ) x(men(n)

n=1

and the constant

£ 0, ify(=1)=1and
LT il )i== s
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Define the completed L-function of y as

G(y) =
Nl=s )= L5 ).
(1)}
The following holds:
(1.5) A= (;) r(s = aX)A(s,)().

For a proof of this fact, the reader can consult [10, §3.4.3], for example.

1.2.1. Modular forms. Let $ denote the upper half-plane
{ze C: J(z) > 0}.

For every 7 in $ and z in C, write ¢ for ¢ and ¢ for ¢*™*. The group GLj (R) acts on
$ via linear fractional transformations:

aib e a b __a'r+b
c d’ c d" T or+d

Forevery A = (%) in GL;(R) and every 7 in $, define the automorphy factor j(A, 1) :=
¢t + d. For every integer k, define a right-action of GL;(Q) on the space of functions
f 9 — Cin the following way:
(f.A) > (fled) () 1= det(A)? j(A, 7)™ f(AT).
Let I' denote the modular group SL,(Z) and, for every positive integer N, set

150
05

F(N):z{Ael":As( )modN} and

To(N) = {A eT:A= ({’; i) mod N}.

A congruence subgroup of I is a subgroup containing ['(N) for some N. The small-
est possible such N is called the level of the congruence subgroup. A cusp of a con-
gruence subgroup G is an equivalence class of P'(Q) under the action of G and a
representative of such an equivalence class is also called a cusp. A multiplier sys-
tem of weight k for G is a homomorphism v : G — S' if k € Z, or a function
v : G — S! such that v(g;)v(g2) = o(g1,g2)v(g1g2) for every g1, g, in G, where
o(g1.82) = j(g1.827)"% j(g2. 1) j(g182. T)""* € {1} is independent of 7, if k € Z + 1.
In addition, v must satisfy v(=1,) = e ™ if -1, € G.

Letk € Z, N € N, let G be a congruence subgroup of level N and let v be a multiplier
system of weight k for G. An elliptic modular form of weight k with multiplier system v
for G is a holomorphic function f : $ — C which satisfies the following properties:

e fl.A = v(A)f for every A in G,
e the function f is holomorphic at the cusps of G.

Every f as above has a Fourier expansion of the form

f@ =) a;mg"™,
nz0
where w is the width of the cusp ico [10, §7.1]. The elliptic modular form f is called
a cusp form if it vanishes at the cusps of G. The C-vector space of elliptic modular
forms of weight k with trivial multiplier system for I'y(N) is denoted by M, (N) and
its subspace of cusp forms is denoted by S;(N). Let M.(N) denote the graded ring
@rez M, (N). If y is a Dirichlet character modulo N and A = (4%) € T'y(N), then set
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x(A) := x(d). The map A — y(A) defines a multiplier system of even integral weight
for Iy(N), which we denote by the same symbol y. Denote the C-vector space of elliptic
modular forms of weight k& with character y for [((N) by My(N, y) and its subspace of
cusp forms by S (N, y).

It is also possible to define elliptic modular forms of half-integral weight, whose
theory was established by Shimura [36]. For example, the Dedekind n-function

09 0= [0 - =3 37 ()%

n=1 neZ

is a modular form of weight 1/2 for I' with multiplier system

; (a b)_{(i)exp(l—g((a+d—3)c—bd(cl— ). if2¢ec,
Ve dlss

&
where

(i5) exp (&((a - 2d)c - bd(c* — 1) +3d — 3))e(cd), if2]e,
—1, ifec<0andd <0and
elc,d) = k
I, otherwise.

The multiplier system v, is a projective character of order 24 [10, §5.8]. Together with
the scalar Jacobi theta series, the Dedekind n-function can be used as a building block
for Jacobi forms, as we shall see in Subsection 1.2.5.

For every [ in N, define the following operators on My(N, y):

UDf() = ) asing,

n=0
VIf() = ) ag(mg",
nz=0
(17 TOf@ =17 > x@fk(§5) @.
ad=I b mod d

It is well-known that the Hecke operators 7'(-) map M,(N, y) to itself and that U([) and
V(1) map My(N, x) to My(IN, x) (see [11, §5], for example). Furthermore, if / [ N, then
U(l)f is an element of M (N, y).

Let f = ¥, ar(n)q" be an elliptic modular form in M(N, y), which is a normalized
eigenfunction of the Hecke operators 7'(/) for all / in N. The L-series of f in s is defined
as

Lisafi= Z ar(mn”.
n=1

It has an Euler product of the form

= — =25 -1
(1.8) Ls, f)=[ [ (1 - asp™ +x(p)p*™7) .
P
The reader can consult [10, §10.7] for a proof of this fact when f € M;(1) and the same
argument holds for f in My (N, x). Define the completed L-function of f as

o) -5
An(s, f) = ("\/—%) (s)L(s, f).

DeriniTion 1.3 (Metaplectic group). The metaplectic group, denoted by [, consists
of pairs A := (A, w(7)) with AinT and w : $ — C a holomorphic function satisfying
w(t)> = j(A, 7). The group law on I is

(A, w(T))(B, v(1)) = (AB, w(BT)v(T)).
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The metaplectic group is a double cover of I' and it is generated by the following ele-

e« T:(([l) i)') and 5:((? mol)’ﬁ)'

DermiTioN 1.4 (Vector-valued modular forms). Let V be a finite-dimensional vec-
tor space over C. For every half-integer k, define a right-action of T" on the space of
functions F : $ — V in the following way:

(F,A) — FlLA(T) := w(t) *F(A7).
Letp:T — Aut(V) be a finite-dimensional representation of I, whose kernel has finite
index in I'. A vector-valued modular form of weight k for p is a holomorphic function
F : % — V which satisfies
FliA(1) = p(A)F(7)
for every element A of T and whose individual components F; (1 < j < dim(V)) extend
to holomorphic functions from $ to C. Denote the C-vector space of all such functions

by M (p).
0 1,

Let 7, denote the n X n identity matrix and set E,, = (_ 1 0 ) The symplectic group
Sp,(R) is the set of 2n x 2n matrices M in GL,(R) satisfying M E,M = E,. We often
consider its subgroup Sp,(Z) of matrices with integer entries. The Siegel upper half-
space of degree n, denoted by $,, is the set of complex, symmetric n X n matrices with
positive-definite imaginary part. The group Sp,(R) acts on §,, via

A B A= Bl .
((C D),Z)H(C D)Z._(AZ+B)(CZ+D) :

Let k € Z and n € N such that n > 1 and let G be a subgroup of Sp,(Z). A Siegel
modular form of weight k and degree n for G is a holomorphic function F : , — C
which satisfies

=D

for every (£ #) in G. An analogous definition can be given for every finite index sub-
group of Sp,(Z).

F ((A B ) z) = det(CZ + D)'F(Z)

1.2.2. Lattices. Let R be a commutative ring and let L and N be R-modules, with
L free of finite rank equal to g. Amap S : L X L — N is called a symmetric R-bilinear
. form if

B(x,y) = B(y, x) and B(x,my + nz) = mB(x,y) + nB(x, z)

for all x,y,zin L and all m,nin R. If N = R, then g is called integral. If B(x,y) = 0
for all y in L if and only if x = 0, then f is called non-degenerate. Let {ey, ..., e,} be an
R-basis of L. The matrix G = (B(e;, ¢/)); ; is called the Gram matrix of B with respect

to {ey,...,e,}. Let ¥ and J be the column vectors whose entries are the coeflicients of x
and y with respect to {ey,...,e,}. Then

¢ 8
(1.9) By) = D ) %y iBlese;) = ¥G5.

i=1 j=1
Dermvition 1.5 (Lattice). Let L and N be R-modules, with L free of finite rank, and

let 8 : Lx L — N be asymmetric, non-degenerate bilinear form. The pair L = (L, ) is
called a lattice over R.
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The lattice L is called integral if the associated bilinear form is integral. By abuse
of notation, denote the quadratic form associated with L by 5(-), i.e. B(x) := %ﬁ(x, X).

Throughout this thesis, we consider only R = Z. Given an arbitrary Z-basis of L,
identify every element in the lattice with its coeflicient vector and drop the tilde from
the notation, i.e. write B(x,y) = x'Gy. Using the matrix formula (1.9), it is possible
to extend the domain of definition of 8 to L ® Q, L ® R and L ®; C in a natural
way. For every z = (z1,...,Zk) in L ®z C, let R(2) = (R(z1),..., R(zxw)) and
J(z) = (I(z1), ..., V(zxw)) denote its real and imaginary parts, respectively.

An integral lattice L = (L, ) is called positive-definite if B(x,x) > 0 for all x in L
such that x # 0. It is called even if B(x, x) is even for all x in L, otherwise it is called
odd. The rank of L = (L, ), denoted by rk(L), is defined as the rank of L as a Z-module.

ExampLE 1.6. The following are examples of positive-definite, even lattices over Z:
(1) For every positive integer m, the lattice L := (Z, (x,y) = 2muxy).
(2) More generally, for every positive-definite, even, g X g matrix M, the lattice
L 1= (Z%,(x,y) - X'Gy).
(3) For every positive integer n, the Z-module
Dy = (020 5 Xy VB Xy e X, € 2T
equipped with the Euclidean bilinear form

(X1, s X)) V1 Yn) B2 XYL+ XY

(4) For every positive integer n, the Z-module
A, = {(X],x;)_, B oy I Z"H OGO o e 0] >

equipped with the Euclidean bilinear form.
(5) The Z-module

Ey = {(x1,%2,...,%5): allx; € Zorall ; € Z+ 4,3+ + X € 22},
: equipped with the Euclidean bilinear form.
DeriniTioN 1.7. For every lattice L = (L, ) and every m in Z, set L(m) := (L, mp3).

If M is a free sub-module of L of finite rank equal to rk(L) and M has finite index
in L, then (M, B) is called a sublattice of L and L is called an overlattice of (M, 3). Two
lattices L, = (Ly,$1) and L, = (L, 3>) are isomorphic if there exists an isomorphism of
underlying Z-modules o : L, — L, such that 8; = 8, o . The isomorphisms between
L and itself form the orthogonal group of L, denoted by O(L).

For the remainder of this section, assume that L = (L,/) is an even lattice over Z.
Define the following Z-module:

LY={yelL®z;Q:p(y,x) €ZY xinL).
The dual lattice of L is the pair L* = (L*,B). It is well-known that, if L has Gram matrix

G with respect to some basis {ey, ..., e} of L, then a Z-basis of L is given by the
dual basis {ef, . . ., efR(L)}, where

and the Gram matrix of L* with respect to this basis is equal to G
An integral lattice L = (L,p) is called unimodular if L* = L. For example, the
lattice Eg from Example 1.6, (5) is unimodular.
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If {fi,..., fey} 1s another Z-basis of L, then consider the change of coordinates

map
tk(L)

U:L- LUE)= ) Usf;

J=1
Its matrix U = (U;;);; is an element of GL,y,(Z) and, if X is the column vector whose
entries are the coefficients of x with respect to the new basis, then UX = x and the Gram
matrix of L with respect to {fi, ..., fixw} is equal to G’ = (U ')'GU™". Let G be the
Gram matrix of L with respect to some basis of L. The determinant of L is defined as
det(L) := [det(G)|. The previous discussion implies that this quantity is independent of
change of basis. It is well-known that L*/L is a finite abelian group of order equal to
det(L).

The level of L, denoted by lev(L), is the smallest positive integer which satisfies
lev(L)B(x) € Z for all x in L". It is well-known that lev(L) is the smallest positive
integer such that lev(L)G™' is an even matrix, independent of the choice of basis for L
[13, §3.1]. The following remark from [10, §14.3] plays an important role throughout
this thesis:

Remark 1.8. If L is even, then lev(L)L* € L. Furthermore, the level and the dis-
criminant of L have the same set of prime divisors: if rk(L) is even, then lev(L) | det(L) |
lev(L)™L) and, if rk(L) is odd, then 2 | det(L) and 4 | lev(L) | 2 det(L) | lev(L)*®,

DermniTioN 1.9, Set
e (-1 det(L),  ifrk(L) = 0 mod 2 and
(-1 12det(L), if k(L) = 1 mod 2.

Itis well-known that A(L) is a discriminant (see Lemma 14.3.20 and Remark 14.3.23
in [10, §14.3)).

DermviTioN 1.10. For every a in N and every D in Q such that DA(L) € Z, set
xiu(D,a) = (%) and xi(a) = x.(1,a).

Since A(L) is a discriminant, the function y,(-) is a well-defined quadratic character
modulo |A(L)|.

DermiTioN 1.11 (Finite quadratic module). A finite quadratic module over Z is a
pair (M, Q), such that M is an abelian group of finite order and Q : M — Q/Z is a
non-degenerate quadratic form on M, i.e

e O(ax) = a*Q(x) for all a in Z and all x in M,
e the symmetric form 5 : M x M — Q/Z defined by

B(x,y) = Q(x +y) — O(x) — O(y)
is Z-bilinear and non-degenerate.
The following result is [41, Theorem 1.1.8]:
Tueorem 1.12. Every finite quadratic module (M, Q) is isomorphic to a direct sum
of finite quadratic modules of the following type (called Jordan constituents):
o AL, = Zyny,r P ’l;—',) for some odd prime p and some integer t such that

(t,p)=1, :
o Al = (Zony,r > %{T),for some odd integer t,

° BZH = (Z(zll] X Z(EHJ, (r, S) = _r_+g;!l'+k\"' )’
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o Con:i= (Z(gu) X Z(gu), (r,s) — %)
DermNtrion 1.13 (Discriminant module). When L is even, the reduction of £ modulo
7 induces a bilinear form on L"/L. The discriminant module associated with the lattice
L is the pair
Dy := (L*/L,x+ L~ B(x) + Z).
It is a finite quadratic module over Z.

The orthogonal group of Dy, denoted by O(Dy), consists of all automorphisms & of
L*/L such that 8 o @ = 8. Every automorphism of L extends to an automorphism of L”,
which in turn induces an automorphism of D;. Hence, there is an induced homomor-
phism between O(L) and O(D,) (which need not be injective or surjective).

For every element x in L¥, let N, denote the order of x + L in L'/L, i.e. the smallest
positive integer such that N,x € L. Let lev(x) denote the smallest positive integer such
that lev(x)B(x) € Z.

RemaRk 1.14. Since B(x, N.x) € Z and S(N,x, N, x) € 2Z for every x in L*, it follows
that lev(x) | 2N, and that lev(x) | N‘2 In particular, we have lev(x) | N, when N is odd.

The isotropy set of Dy is
Iso(Dy) := {x € D : B(x) = 0}.
Lfet 7, denote the set of isotropic subgroups of D;. '

; ) 5
DeriniTioN 1.15. There is an action of Z(h,_v@)

tion. Let %), be a set of representatives of the orbit space Iso(Dy)/Z

on Iso(D;) given by right multiplica-
SEV(L))‘

Consider the group algebra C[L* /L] of maps L* /L — C, with natural basis {¢}.c/#/L.
Define a scalar product on C[L*/L] as

(), Few ), &)= D fis

xel?/L xel#/L xel*|L

DEFINITION 1.16 (Weil representation). Define the Weil representation as_sociated
with L of T' on Aut(C[L*/L]) by the following action of the generators of I on the
basis elements of C[L*/L]:

pL(T)L’I =e(B(x))ey,

. Tk(L)

=%

= 1- 2
S x — 1 =7 Y \},"
A= s )‘E;me( B(x,y))e

In general, write

P;(ﬁ:)t‘y = Z pé(fi)x.yex

xel#/L

for every element A of I'. It is well-known that pr is unitary and hence its dual repre-
sentation is given by the formula

piyey = Y oAyt

Derinirion 1.17 (Direct sum of two lattices). Let L, = (Ly,81) and L, = (L, f3>) be
two even lattices and define a symmetric, non-degenerate bilinear form on L, & L, as
fiheh)yx(Liel)—Z,

f(x1 ® x2,y1 @ y2) := B1(x1, 1) + Ba(x2, y2).
The direct sum of L, and L, is the even lattice L, ® L, := (L, & L, f).
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Derinirion 1.18 (Stably isomorphic lattices). Two even lattices L, and L, are stably
isomorphic if and only if there exist even unimodular lattices U, and U, such that
LoU =LoU,

The following result was proved in [28, §1.3]:

Tueorem 1.19. Two even integral lattices are stably isomorphic if and only if their
discriminant modules are isomorphic.

Let F' be a field of characteristic different from two. A quadratic space over F is a
pair (V, Q), such that V is a finite-dimensional F-module and Q : V — F is a quadratic
form on V. Let (Vy, 0;) and (V3, O>) be two quadratic spaces over F. A representation
of V| into V, with respect to Q, and Q, is a linear map o : V; — V> which satisfies

Q> o0(x) = 0y(x), forall xin V.

When F = Q, every such function can be extended to a function o : V, ® C —
V, ®z C by linearity. If 8, and 3, denote the bilinear forms associated with O, and Q,,
respectively, then every representation o of V) into V; satisfies

Ba (0(x),c(y)) = Bi(x,y) forall x,yin V.

An isometry of (Vy, Q) into (V,, 0,) is an injective representation of V; into V5 with
respect to Q) and Q5.

DeriniTion 1.20 (Isometry of lattices). Let L, and L, be lattices in (V;, Q;) and
(Va2, ©,), respectively. An isometry of L, into L, is an isometry o of (V}, Q) into
(V2, 05), such that oL, C L,.

Fix any two bases Z-bases of L; and L, and let G, and G denote the Gram matrices
of L, and L,, respectively. Let M denote the matrix of o with respect to these bases.
The relation Q; o oo = Q, implies that

M'GM = G,.

Hence, if T and U are change of coordinates maps for L, and L,, respectively, then the
matrix of o~ with respect to the new bases is equal to UMT~'. When rk(L,) = rk(L,),
set det(or) := | det(M)].

1.2.3. Jacobi modular forms. For the remainder of this chapter, assume that L =
(L,p) is a positive-definite, even lattice over Z. In order to define the Jacobi group,
we first need to define the Heisenberg group. This group originates from quantum
mechanics, more precisely in the description of one-dimensional mechanical systems.
In number theory, it is intimately related to theta series via its theta representation. For
details on this topic, see [27, §1.3]. We follow the exposition in [1] and the reader can
consult the cited text for details and proofs.

Derinition 1.21 (Heisenberg group). The Heisenberg group associated with L is the
set

HER) = ((,,0) : x,y e L& R, L € S},
equipped with the following composition law:
(X1, Y1, §1)(X2, ¥2, £2) 1= (X1 + X2, 1 + 2, 142€ (B(x1,¥2))) -

The integral Heisenberg group is the subgroup HX(Z) := {(x,y,1) : x,y € L} of
HL(R). Drop the third entry from the notation for this group for simplicity.
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ProposITION 1.22. The group SLy(R) acts on HE(R) from the right via
((xv Y, g)v A) k=% (x’ }’, .C)A = ((-’\.a }’)A, §62 (ﬁ ((X, )’)A) _ﬁ(x, )’))) 5

where (x,y)A is the vector obtained by multiplying the row vector (x,y) with the matrix
A.

DeriniTioN 1.23 (Jacobi group). The real Jacobi group associated with L, denoted
by JX(R), is the semi-direct product of SL,(R) and HX(R). The composition law on this
group is

(A, h) - (A", B)) = (AA", KM I).

The following holds:

ProposiTioN 1.24. The real Jacobi group acts on the left on the space H X (L ®z C).
IfA € SLy(R) and h = (x,y,0) € HER), then the action of (A, h) on a pair (1,7) in
9 X (L ®z C) is defined as

Z+ a7+
(A, h),(7,2)) > (A, h)(z,2) = (AT, —y)
JA,T)

The real Jacobi group also acts on the space of holomorphic, complex-valued func-

tions defined on H X (L ®z C).

DeriniTion 1.25 (Jacobi slash operator). Let k be a positive integer and let ¢ : $ X
(L ®z C) — C be a holomorphic function. For every A = (94) in SLy(R), set

3 Z ; —+,(=BR)
Ol LA(T,2) = (p(AT, j(A,'r))j(A’T) e(j(A,T))

and, for every h = (x,y, ) in HX(R), set
GlLh(t, 2) 1= {P(T, 2 + xT + y)e (TB(x) + B(x, 2)) -

The action of J-(R) on the space of holomorphic, complex-valued functions defined on
9 %X (L ®z C) is defined as
(1.10) (¢, (A, 1) B @l (A, h) i= (Pl LA
Note that the actions of I and H%(R) do not commute.
The integral Jacobi group is the subgroup J(Z) := SL,(Z) =< HX(Z) of JX(R). From

now on, drop the word “integral” from the language and the (Z) from the notation for
this group.

DeriniTioN 1.26 (Jacobi form of lattice index). Let k be a positive integer. A Jacobi
form of weight k and index L is a holomorphic function ¢ : $ X (L ®; C) — C with the
following properties:

(1) for all y in J£, the following holds:
Gliy(T, 2) = ¢(7, 2);
(2) the function ¢ has a Fourier expansion of the form

(1.11) dT= Y cynrent +B(r,2).

neZrel?

n>p(r)
The complex numbers c,(-, -) are called the Fourier coefficients of ¢.
For fixed weight and index, denote the C-vector space of all such functions by J; ;.
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Remark 1.27. Consider the lattice L, from Example 1.6, (2); then Ji.1. 18 the space
Ji.1 of Jacobi forms of weight k and matrix index G defined in [2]. Consider the
lattice L, from Example 1.6, (1); then the space Jk.ém is the space Jy,, of Jacobi forms
of weight k and scalar index m defined in [14].

It is also possible to define Jacobi forms of half-integral weight, of odd lattice index
or with multiplier system. We do not go into further details and instead refer the reader
to [22, §II1.9]. The following lemma is a particular case of [9, Proposition 2.5]:

Lemma 1.28. Let ki, ky € N and let L, and L, be two positive-definite, even lattices
over Z. If ¢(7,21) € Jy, 1, and Y(7,22) € Jy, 1, then

¢, 2 W (T, 22) € Jiythy L 0L,

We include the proof, since it is not given -explicitly in [9]:

Proor. We remind the reader of Definition 1.17 of the direct sum of two lattices.
Set L, & L, = (L,B), z := 21 ® 22 and (7, 2) := (7, 2)¥(T, 2) for simplicity. Then &
is a holomorphic, complex-valued function defined on $ X ((L; & L,) ®z C). For every
A =(25)inT, we have

., - 2 Ve oty [S60()
SRR e (AT’ i@, r)) i (j(A, r))

i 21 2 ; —ky
= (AT’ i, r)) 4 (AT’ A, r)) e
X j(A,7)"e (

_CBI(ZI)) X (—Cﬁz(zz))
=@k, 1, AT, 20, 1, AT, 22) = 6(7, 2),

J(A,7) J(A,7)

since ¢ € Jy, L, and ¢ € Jy, 1. .
Each x in H%:®5(Z) can be written as x = x; ®x,, with x, € H:(Z) and x, € H=(Z).
For every (A, 1) = (A, @ Ay, ity ® ) in H4®2(Z), we have

Olr,oL, (A, )(7, 2) =6(7, (21 + 1T + 1) @ (22 + 27 + U3))
X e(T(B1(1) + B2(42)) + Bi(A1,21) + Ba(A2, 22))
=@l (A1, )(T, 2L, (A2, 12)(7, 22) = (T, 2P (T, 22)
=4(7, 2).

Suppose that ¢ and ¢ have the following Fourier expansions:

dna)= D coln,Ne(nt+pirz) and

neZrelf

n=p1(r)

W(T,22) = Z cy(m, s)e (mt + B(5,22)) .
mEZ..\'GLg

m=f,(s)

The Z-module L contains elements of the form y = y; @ y, in L ®; Q, which satisfy
B(x,y) € Z for all x = x; @ x, in L. Take x; = 0 and then x, = 0 in order to obtain that
yi1 € L and y, € L%, respectively. It follows that L* C L¥ & L# and the reverse inclusion
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also holds. Thus, we have L* = L & L} and therefore

o(t,z) = Z Z Z Z cy(n, r)cy(m, s)e (n + m)t + B1(r,21) + Ba(s, 22))

neZ meZ rELf self
nzp1(r) m=fa(s)

:Z Z ( Z cy(n, r)cy(m, s))e(hr + B(t, 2)),

heZ (er# n+m=h

hz(r)
where we have substituted t = r@s. The sum over n and m has finite support and setting
S(h 1) := 3= Co(n, r)cy(m, s) leads to the desired form for the Fourier expansion of
¢, completing the proof. o

The result in Lemma 1.28 can be extended inductively to the product of arbitrarily
finitely many Jacobi forms ¢y, ..., ¢, of arbitrary weights and indexes. The following
useful result is [1, Proposition 2.4.3]:

Proposition 1.29. If ¢ in Ji, has a Fourier expansion of the form

b@= ). cylnren +pr,2),

nezrel?
nzp(r)

then cy(n, r) depends only on n—f(r) and on r mod L. More precisely, we have cy4(n,r) =
cy(n’,r") whenever r = ¥ mod L and n — 3(r) = n’ — 5(r’").

Define the following set, called the support of L:
(1.12) supp(L) :={(D,r) : D € Q, r e-L*, D = B(r) mod Z}.
For every ¢ in J;, with Fourier expansion (1.11) and for each pair (D, r) in supp(L), set
Cy(D,r) := ¢4 (B(r) = D,r). Proposition 1.29 implies that every ¢ in J; ; has a Fourier
expansion of the form
(1.13) ¢(1,2) = Z Cy(D,r)e ((B(r) — D)t + B(r,2)) .

(D,r)esupp(L)

We will often use the interplay between these two Fourier expansions. In particular, use
the latter to define cusp forms:

Derinition 1.30 (Cusp form). A Jacobi form ¢ is called a cusp form if Cy(0,7) =0
for all r in L* such that B(r) € Z. Denote the C-vector subspace of cusp forms in J; ;. by
Sk

Derinirion 1.31 (Singular term). For each ¢ in Ji;, define its singular term as the
series

Co@)(T2) 1= ) Cyl0,r)e (Tp(r) +B(r,2)).

oz
DeriniTion 1.32. Let r in LY be such that 3(r) € Z and define the function
gL, 2) = e (7B(r) + B(r, 2))
on the space 9 x (L @z C).
DEeFiNITION [.33. Set
J% = {((41),O.w):neZpeL}.

We will show in Chapter 2 that J% is the stabilizer of the exponential functions
gr,(-,+) in JE. Jacobi-Eisenstein series are defined in the following way:
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DeriNtTION 1.34 (Jacobi-Eisenstein series). Let k be a positive integer such that k >
k(L ; Lt 1 ’ . :
Li:l +2. For each r in Iso(D.), define the Jacobi-Eisenstein series of weight k and index

L associated with r as

1
(1.14) Brir =3 D gLy,

Define the subspace Ji} of Ji, as the C-span of the set {E;;, : r € Iso(Dy)}. The
series (1.14) converges under the imposed weight restrictions. It is possible to define
Jacobi-Eisenstein series for 1 < k < m,ﬁ + 2 by using “Hecke’s convergence trick”,

however we do not pursue this further. It was shown in [1, §3.3] that
(1.15) Eipr=(-1)*Ergr

It is also possible to define “twisted” Eisenstein series: for every r in Iso(D) and every
Dirichlet character £ modulo N,, set

(1.16) Eppre = ), &@Eipar

deZ Nr)

Since &£(d) = 0 whenever (d, N,) > 1 by definition, the above can be written as

Bypes= ), E@Eipan

X
deZy

Equation (1.15) implies that
Erpre =(-1) ) EdExar=(D" > &-d)Eia

X Zx
dE"( Nr) de_._,( Nr)

=(-1) E(-1)Es L e

and it follows that Ey; . vanishes unless &(—1) = (=1)*. We remind the reader of

Definition 1.15 of the set Zy,. If x = rin %y, (i.e. x = er for some e in ZSEV(L))), then

Evree= ), EDEipir =€) D EfExpsr = E@Erpne.

= e
deZfy, €Ly,

We have made the substitution f = de and we have used Remark 1.8, which implies that
multiplication by e is an isomorphism of Z(XM). We have also used the fact that N, = N,
if x = r in #,, which we will prove in Lemma 3.52. By summing over all Dirichlet
characters modulo N, and using the character orthogonality relation

—  ||1Z%.], ifd=eand
E(dECe) = {0 4 othern
f mod N, 3 0] 'lf:IWlSC,
we obtain that
|
Exrr= 1Z5 EyLre
(N)' £ mod N,

In other words, the untwisted Eisenstein series can be recovered from the twisted ones.

It is well-known that, for every positive integer N, there exists a canonical bijection
between the set of Dirichlet characters modulo N and the set of primitive Dirichlet
characters whose conductor divides N. This bijection maps each Dirichlet character
modulo N to the unique Dirichlet character which induces it (see Definition 1.2). Hence,
we arrive to the following definition from [1]:
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DEeriniTION 1.35. Let & in N be such that & > rk%) + 2 and let r € %,. For each

primitive Dirichlet character y modulo F with F | N,-. and y(=1) = (=1)%, define
Byt =) X @Erta:

X
dEZ( Nr)

For k < rk(L) + 2, the character y has to be non-principal (i.e. F # 1) for convergence
reasons.

For each Dirichlet character y of modulus F as above, define a Dirichlet character
¥ of modulus N, in the following way:

5 x(d), if(d,N,)=1and
x(d) = .
0, otherwise.

It follows that Exy ., = Ejpry. Where the latter series is defined in (1.16).
For every x in L*/L, define the Jacobi theta series

(1.17) I = ). e(@Br) +B(r2)
rrciai T

and set

(1.18) ®, := Spang{¥y, : x € L*/L}.

It was shown in [3, §3.5] that the series ¥ (7,-) (x € L*/L) are linearly independent as
functions of z. These functions are interesting in their own right and much can be said
about them. We focus on their modular properties and refer the reader to [3, §3 and §4]
for an in-depth discussion. Extend the definition of the | z-action of I" on holomorphic,
complex-valued functions defined on $ X (L ®; C) to I in the following way: for every
kin 1Z and every A = (A, w(1)) in T, set

w(T)?

Pl AT, 2) = ¢ (A'r, Lﬁ) w(r) e (ﬂ) |
B w(T)*

It was proved in [3, §3.5] that, for every x € L*/L and every A as above, the theta series
., satisfies the following:

(119) ﬁéllﬂ'_}#éA‘- = Z :OL(A-)A\TS_I:)
E yel#/L

In particular, the set @, is a [-module. For each ¢ in Ji., with Fourier expansion (1.13),
define the following function on the upper half-plane:

Bildi= R k.
DeQ
(D,x)esupp(L)

We will review the modular properties of 4, in Subsection 1.2.4.3. It was shown in [1,
§2.4] that every Jacobi form has a theta expansion:

Prorosition 1.36. Every Jacobi form ¢ in Ji . can be written as

(1.20) $ED= D hyp(DILT2).

xel#[L

The following result was proved in [4]:
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Tueorem 1.37. Let L, and L, be two positive-definite, even lattices over Z and as-
sume that j : Dy, =5 Dy, is an isomorphism of finite quadratic modules. Then the
map

ok ,‘ — :
[, ‘]k+[ 1(29)1‘!4 Jk+[’”§-‘”].£l

defined by
D Mt m e ) BTy, (T 2)
xelh/Ly xell/L,

is an isomorphism.

It was shown in [1, §3.3] that Eisenstein series can be written in terms of theta series
as

1
(1.21) Eyr,= 3 Z D rle LA

Ael\I
In particular, the series E; ;. , only depends on r modulo L. Call E; ; ¢ the trivial Eisen-
stein series. 5 %
Next, define a scalar product on §; ;. Forevery rin $and zin L& C, let T = u + iv
and z = x + iy be their decompositions into real and imaginary parts. In [1, §3.2], the
author defines a JE(R)-invariant volume element on $ % (L ®; C) in the following way:

AV (zz) = v"rk@’zdudvdxdy.

For every pair of functions ¢ and ¢ which are invariant under the |, ;-action of a sub-
group A of JE of finite index, set

(1.22) W (T, 2) := B(T, DU (T, 2 PO
It is easy to check that w,, is also A-invariant.

DermviTion 1.38 (Petersson scalar product). Let A be a subgroup of JE of finite index
and let F4 denote a fundamental domain for the action of A on $ X (L ®; C). If ¢ and v
are two functions which are invariant under the [, ;-action of A and either one of them
is a cusp form, define

1
(1.23) (D, Yda = ﬂf Wy (T, 2)dV (1)

A
The Petersson scalar product of two Jacobi forms does not depend on the choice of
fundamental domain, or in fact of the subgroup A. Thus, drop the subscript from the
notation and write (¢, ) := (¢, U). Given a fundamental domain & for the action of I’
on $ and a fundamental parallelotope ¢ for (L ®z C)/(7L + L), choose as a fundamental
domain for the action of J% on $ % (L ®- C) the set

Sr={(1,2) € DX (LezC):7e§ ze P}/fid, o},

where ¢ is the reflection map (7, z) — (7, —2).
According to [1, Proposition 3.2.10], the Petersson scalar product can be expressed
in terms of theta expansions in the following way:

Prorosition 1.39. Let
¢ = Z hy O« and W= Z hy P«
xel*/L xel#/L
be two Jacobi forms in Ji, such that either one of them is a cusp form. Then

(B, 0) = 27°F det(L)* f Z hyﬁ._\.(r)hw__r(r)v"*i"zﬁ*zdudv.

N yerr/L
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In the proof of this Proposition given in [1], a scalar product is defined on @, by
fixing a fiber 7 in $ in (1.23):

(D) ePun D dib) = f D, L) ) dBL OO O dxgy,
rel#/L sel*/L B rerf/L selt/L

It was shown in [1, §3.2] that

(D) B Y dif =2 2Qde @) T Y o,

rel*/L sel*/L relt/L

Let [-, -] denote the following normalization of the above scalar product on ®,:
(1.24) (D oy B ditg)= > ode T
rel*/L sel¥/L relF/L "}“";Lf« }&V’[( e \//,_,W
{2 oot /

This scalar product is non-degenerate.
p g f»’yﬁr B oA L

“« £
1.2.4. Relations with other types of modular forms. In this subsection, we stueﬁ/ ?u (ol

the relation between Jacobi forms and Siegel modular forms and that between Jacobi % {k c/’
forms and vector-valued modular forms for the dual Weil representation. These types of s
modular forms have been studied extensively in the literature and they represent crucial / /"/"”
tools in the study of Jacobi forms. We also study the relation between Jacobi forms ﬁ"\” ¢
and orthogonal modular forms. Since the latter are not as well-known as other types of /-

automorphic forms, we will give a brief overview. a,W
2.4.1. Jacobi forms of scalar index. 1t is useful to have a background knowledge
of the theory of Jacobi forms of scalar index. The integral scalar Jacobi group is T :=
I = Z>. This group acts on the right on the space of holomorphic, complex-valued q’: vt/
functions defined on $ x C. Let k and m be positive integers. For every y = (A, h) with

A=(25)inT and h = (x,y) in Z?, set //4,77!;,&{,/,

AN 2 »/

—c(z +xT + y)2

2
+x T+ 2xz+ xy]|.
ct+d })

¢Ik‘,,ty(‘r, 7) i=¢ (AT, M) (cT + d)—kem (
ct+d

This action agrees with Definition 1.25 when L = L, (see Remark 1.27). The space Ji
of Jacobi forms of weight k and scalar index m consists of all holomorphic functions
¢ : H X C — C with the following properties:

(1) for all (A, h) in I/, we have ¢|;.,.(A, h) = ¢;

(2) the function ¢ has a Fourier expansion of the form

(1.25) #(1,2) = Z bs(n, )e(nt + 1'2).

nr'el

dmn—r?=0
Note that Lf; = .,mZ det(L,)) = 2m and lev(L,) = 4m. Substitute 2Zmr = r" in (1.11)
and set by(n, r') := cy(n, 2m). in order to obtain the same expression as above. A scalar

Jacobi form is called a cusp form if by(n,r’) = 0 whenever 4mn = r.

ExampLE 1.40. Let k > 4 be an even integer. The Fourier expansion of the Eisenstein
series Ey ;o is computed in [14, §1.2]:

(1.26) Er 0(1,2) = Z erm(n, rie(tn + 2mrz);
neZre =17
n=mr*
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if n = mr?, then g, (n,r) = 1 if r € Z and it is equal to zero otherwise; if n > mr?, then

(o]

k
1)z J'!'k =3 3 i) =
erm(n,r) = ) (4nm — 4m*r*)*2 e e.(md™' 2> = 2mrA + nd),
’ mk=12K-2(k — 1)
7 c=1 A.d mod ¢
(d.c)=1

where d~! denotes the inverse of ¢ modulo c. Note that we have made the substitution
r = 2ms and relabelled s = r in [14, §1.2, (5)]. When m = 1, the above expression
simplifies to
ex [(”, I’) st L4(f'2—rz)(2 I-- k) ,
' Z(3 - 2k)
where we remind the reader that Lp(s) := L(s, xp) for every discriminant D. When m
is square-free,

]
2 -/ ] = dk_l L 1 Hif’zfil 2 = k
€y, n(” 1’) 4,(3 = 2:’()0‘;\'_1(111) dl(,;;r‘m) 4 !4- x( )

and it is possible to obtain a similar expression for arbitrary m. We generalize these
results in Section 2.3.

In general, write m = ab?, where a is the square-free part of m, and define

I 2. bs
Epms(1,2) = 5 Z f]m g-m“lk‘m'}/.
}’EJ&,’"\F"

Then
‘”2{ Raksi— o mr(i)2 + 2m.z£ = (1,2)

and the following holds:

{% iS5 € Z(m} = Iso(Dyp, ).

To check that this is true, if &~ € L*/L, then B(5) = ﬁ is an integer if and only if
4m | r?, i.e if and only if 4ab® | r*. This is equivalent to the condition that r = 2abs
for some s in Z. On the other hand hand, it is clear that [,—‘J Hse Z(m} C Iso(Dy, ). It
follows that Ey s = Epy s Twisted scalar Eisenstein series are defined in [38, §2]
in the following way: for every divisor ¢ of b and every primitive Dirichlet character y

modulo F with F | 2 and y(-1) = (= 1)F, set

Ek.m.r.,y = Z X(d)EkJn.!d-

dmnd?

The order of £ in L! /L, is equal to b/t and therefore

‘
b m
Ek,m.r.X = Z X(d)E,r\é%f .

d mod N
b

This does not agree with Definition 1.35, since the corpimality conditions are missing
in the summation.

ExampLE 1.41. Itis also possible to define scalar Jacobi forms of half-integral weight
and half-integral index. An important example is the scalar Jacobi theta series

(1.27) 9(t,2) = Z(—“‘)E(T%’-!-%)

nez
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which has weight 1, index £ and multiplier system

v(A, (x,3)) = vy(A) - (=)™

It can be used as a building block for Jacobi forms, together with the Dedekind 7-
function.

RemARK 1.42. The Jacobi group I'/ can be embedded into Sp,(Z) as the parabolic
subgroup

+ M) B
¥ 1 = =%
(1.28) e € Sp,(Z) ¢,
0 00
via the map
a 0 b ay-bx
a b S Y xy
((c d)’(x’y))'_) ¢ 0 d cy—dx|
0 00 1

The matrix on the right-hand side is the matrix product of the following embeddings of
I" and Z? into Sp,(Z):

a 0 b 0 100" y
a b (0 (S 10 ; : A Ay ey
(c d)'_’coa'o 2 G| i e
000 1 000 I

For every pair (1,z) in $ X C, let Z = (? ) be an element of $, (it follows that w is a
variable in ). It is easy to check that ¢(, z) € Jy,, if and only if Y(Z) = ¢(7, 2)e(mw) is
a Siegel modular form of weight k and degree 2 for the parabolic subgroup (1.28). For
every positive-definite, even lattice L, there exist canonical injective homomorphisms
HEZ) — JEand T’ — JE, given by

h— (I, h) and A — (A, (0,0)).
In particular, it follows that
[ = I < Sp,(2).

It is straight-forward to check that Jo = M,(T'). It follows that Jacobi forms of scalar
index are an intermediate between elliptic modular forms and Siegel modular forms of
degree two.

It was proved in [38] that there exists a Hecke equivariant lifting map between Ja-
cobi forms and elliptic modular forms. Let W, denote the m-th Atkin—Lehner involution
(9 ') and set

ME(m) := Spang(f € My(m) : fliW,, = &i * f},
where € € {+,—}. Then
feMi(m) = Ay, [) =eAutk—s,f).

The space M, (m) has a (not necessarily unique) basis of modular forms whose L-series
have an Euler product. Every such modular form f is an eigenform of all Hecke oper-
ators T'(I) with (I, m) = 1 and has the same eigenvalues for these operators as a unique
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newform g in M;(m’) for some m’ | m. The quotient L(f, s)/L(g, s) is a finite Dirichlet
series with an product expansion of the form

L(fs) _
Ty =112

where Q,(s) is a polynomial in p™*. The L-series of g has a functional equation under

s = k — s and, provided f is an eigenform of all Atkin—Lehner involutions on M (m),
so does L(f, s). Wt at each of the 0,’s has a functional equation
e 2 ’ . s

Qp(k —5) = j:pﬂp(m ;’m)(.k—?..\)Qp(S).

If /€ M, (m) and even one of the signs in the above functional equation is a minus,

then L(f, s) has a higher WMMS). Define Wi, (m) to be the
subspace of My (m) which 1s spanned by all\f for which the sign in the above equation

is + for all p | 2% and set

m
g| 1
F Im’

N (m) = D (m) N

\ Ne, 5
The following holds: 7 o 50 Zias
g ('zyj'l.r\Tleqc__ .rl Gy [(( (%ﬂ\‘%/-/ s
Tueorem 1.43. For k > 2, the spaces Jy,, and D, _,(m) are isomorphic as Hecke
modules. bt towed ¢ Al
The lifting tn%pcigj?i%'fglﬁl?\%z Ca-y oy )

Tueorem 1.44. Let D be a fundamental discriminant and let s be an integer such
that D = s* mod 4m. Then the map

IDis * Jem = VG, _,(m),
defined by

2 E£rd
Z bin, """ = Z [ Z a*” (%) 4 (% : D4ms : f;-s) ]qf

nr'eZ >0 all
Amn-r=0

commutes with Hecke operators and with Atkin—Lehner involutions, it preserves cusp
Jorms and Eisenstein series and a linear combination of these maps is an isomorphism.

Special care needs to be taken when / = 0 in the above equation, however we omit
the details and refer the reader to [38, §3] instead.
1.2.4.2. Jacobi forms and Siegel modular forms. We generalize the construction
from Remark 1.42 for every arbitrary positive-definite, even lattice L = (L, 3).

Fix a Z-basis of L. It follows that the Gram matrix G of L is also fixed and the vector
coordinates of elements of L depend on this basis as well. Embed I into Sp,;),,(Z) in
the following way:

a O b 0
_(a b 1|0 fxw 0 O
A‘(c d)HA'_ cii0r e

0 Oy 0 Iy

where 0 is the rk(L) X 1 zero vector and Oy, is the rk(L) X rk(L) zero matrix. Embed
HX(Z) into SPr+1(Z) in the following way:

I O L O R
i AR A Irk(é) M /1[1’
h=(Auw)y- h:= Oerep

0 Oy 0 Inw
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It is straight-forward to check that A and / are elements of SPry+1(Z). Finally, embed
JE into Spy 1y+1(Z) by taking the matrix product of the above embeddings:

a 0 b au->bA

t

—~—

= oS e [rk(é) H /1}.[
(1.29) y=AhH ¥:=Ah= S E o=
0 Oy 0 luq
LetT! () denote the image of this embedding.

Next, embed $ x (L ®; C) into Hi)+1: identify every element z in L ® C with
its coefficient vector with respect to our chosen basis and complete every pair (7, z) in
$ X (L ®; C) with a variable w in 9y such that I(1)I(w) — T(2)I () > 0 in the

following way:
1
(m)HZ::(T Z).
zZ w

It is well-known that Z € $ )41 [2]. For every holomorphic function ¢ : $x(L&zC) —
C, define a lift = ;
/ A L Ls ne './Z

c 3iegel miduli
Feps,

N e

#Z) := qb(‘r z) exp(m Tr(wG))

The following holds:

Lemma 1.45. A holomorphic function ¢ : X (L ®z C) — C is an element of Jy .
if and only if its lift ¢ : D1 — C is a Siegel modular form of weight k and degree
k(L) + 1 for Frku

Prook. The holomorphic function ¢ is a Siegel modular form of weight k and degree o
k(L) + 1 for l"“r , if and only if
o~ e

(1.30) $(¥Z) = del(PZ + 0)'d(Z)
o ey R e ﬂ ar s
for every ¥ = ( P Q) as in (1.29). We have j

5\1\‘1 (B4 DZL;

jﬂfft’[ Bro5 = (‘51/[»‘:_}

1 {rarehb  algrp) —bl Ja A

MZ+N_(2;+AT+;1 zlz’+w+/l,u’) Vv ea= """"")j <Zu.,,

and o 5“/’””'-
PZ+Q:(CT+G' c(z+,u)’—d/l’)' /J_} [fém- A // &
0 Irk(é) h"l [.g{//, [r-_/ / J
It follows that £ [u
1 —clztp) +dA’ - z
(PZ + Q)“ ((CT +d)y cT+d ) ]
0 A0

which implies that det(PZ + Q)™ = (¢t + d)* and hence that

A f:g fil’f} (—c(z+p) +dA) +a(z+p) — bA'
= Z z4A —(= i t 3
Y 2+ ATHu (z+ AT+ (—c(z+p)+d ) i /12! o o /l,u’

ct+d cr+d

Note that

ar+b z+ AT+ pu
—=C dA L) —bl=———-—
c1-+d( Set e cT+d

and
@+ At + @) (—cz+p) +dA)  c(z+ AT+ p)(z+ At + p)'

! I 1
s = =y +2z4 + 1A + ud
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and therefore

AT (z+Ar+p)
N cr+d
')’Z-— AT _('(:-t—,lﬂu)(ifl.lrml'
Th
cr+d Hz A+ A )T A+ + A" )+ w

Let w(Z) denote the bottom right entry of every element Z of $yy )41 It follows that
(1.30) is equivalent to
I+ AT+

¢(t, 2) exp (i Tr(w(Z)G)) = (cT +d) "¢ (AT, =

) exp (i Tr(w(¥2)G))

and this is in turn equivalent to

: +AT &
#(1,2) =(ct + d) ¢ (AT, %) exp (m’ Tr (((z/l’ + A7) + 7AA
(1.31)
‘ +Ar + + AT + p)’
Sl = cz+ AT+ )z + AT+ p) )G))
ct+d
For every rk(L) x 1 vector v, we have
Vi 2 Vigil Vi X Vigs e Vi Esvign-k(g
Tr(W)G) = Tr Va 2 Vigil Vo D Vilp s Vo Vi8irk(L)
Vik(L) 2 Vigil  Vik) i Vi€iz  --- Vik@L) i Vi8ikL)

= Z vivigij = 2B(v).
ij

Since Tr(MG) = Tr(M'G) for every rk(L) x rk(L) matrix M, we have

VI Wil ... VI 2 WiBikw)
vV Wi 2 o v i Wig;
Te(ow' + w)G) =2Tr| "2 2iWisa 2 i Wil
Vik(L) DG v Vik(L) 2 Wilitk(L)

=2 Z wiv;gi; = 2B(v, w)
ij

for every two rk(L) x | vectors v and w. Thus, the exponential factor on the right-hand
side of (1.31) is equal to

—cfz+ AT+ )
e
cT+d

+7B(A) + B(4, z)),

which is the exponential factor from the definition of the |, ;-action of the Jacobi group
(1.10).

Last, but not least, the Siegel-Fourier expansion of ¢ is equivalent to the Fourier
expansion of ¢. The group I/ contains matrices of the form

rk(L)
(Irk(;)u T )
0wy I/’
where T is a positive semi-definite, even, (rk(L) + 1) x (rk(L) + 1) matrix. It follows that
every Siegel modular form of degree rk(L) + 1 and weight k for I";’k( 1) Is invariant with
respect to the linear transformations Z — Z + T given by such matrices and hence has

a Fourier expansion of the form:

$(2) = ) AT) exp(ai Te(ZT)),

=0
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where the summation is taken over all positive semi-definite, even, (rk(L)+1)x(rk(L)+1)
matrices. The Fourier coefficients A(T) are given by the integral

A(T) = f U(Z) exp(—mi Te(ZT))dX,
X mod 1

where we have written Z = X + iY and dX is the Euclidean volume of the space of
X-coordinates. Write every Z in 91 as £ = (f Z’), with 7 in 9, w in H, and

w

z € C*D such that J(1)J(w) — J(2)T(Z') > 0. Every T as above can be written as

T - 2 A 1 0O\ (2n—xM"'x O 1 0
Vi eMIEVELE T 0 MI\M™'x )’

with n in Z, M a positive semi-definite, even, rk(L) X rk(L) matrix and x in Z*% such
that 2n = x'M~'x > 0. This is called the Jacobi decomposition of T. Writing A(T) =
Ay (n, x), the Fourier expansion of ¢ becomes

$(Z) = Z Ay, x) exp(mi (2nt + Tr(2zx' + wM))

nx,M
2n—x' M~ x>0

= Z ( Z Ay (n, x)e (nt + Tr(zx")) ) exp(ri Tr(wM)).

M=0
2n-xX M~ xz0

Since ¢(Z) = ¢(t, z) exp(mi Tr(wG)), it follows that
b= > Agnxe(nt+Trzx)).

neZz,xeCkb)

2n-x'G1x20

Substitute Gr = x. Then x € Z*Y = r € L* and Tr(zx') = B(r,z). Furthermore,
2n—x'G'x >0 & n > B(r). Hence,

pr)= D Agn,GRe(nr +B(r,2),

neZrel?

n>p(y)

completing the proof. ]

1.2.4.3. Jacobi forms and vector-valued modular forms. In this subsection, we dis-
cuss the connection between Jacobi forms and vector-valued modular forms for the dual
Weil representation (see Definition 1.4 and Definition 1.16). We remind the reader of
the theta expansion

$r.) = D hpDL(52)

xel#/L

of a Jacobi form ¢ in J; ;. It was proved in [3, §3.7] that, for every x € L?/L and every
A in T, the functions g, satisfy the following:

h¢_‘\_|k_@}1‘ = Z PL(A-).\‘.)-ht.bo'-
: vel#[L

These modular properties imply that the vector-valued function

hyo() = D hpal)es

xel#]L
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is an element of@wmeover, as a result of (1.19), the vector-valued function

T2 = ) Bu(r2)

xel¥/L

1w ]’M.«ul-k

1s an element Oerkiy (o). The main result in [3, §3] is the following theorem:

Tueorem 1.46. If L = (L,p) is a positive-definite, even lattice over Z, then the map

o hyy
is an isomorphism between J;., and M, _ww (07 ).
L A

The results in [3] hold over arbitrary totally real number fields, not only over Q. A
consequence of this theorem is that J;; = {0} if kK < rk(L)/2 and that the spaces J;
are finite-dimensional. When k € Z, it also gives a connection between Jacobi forms of
odd rank lattice index and half-integral weight elliptic modular forms, while for Jacobi
forms of even rank lattice index it gives a connection to integral weight elliptic modular
forms. For every fixed lattice L, the value k = rk(L)/2 is called its singular weight.
The value £ = (rk(L) + 1)/2 is called the critical weight. Note that there also exists
an isomorphism between skew-holomorphic Jacobi forms of lattice index L and vector-
valued modular forms for p,. We do not go into further details and instead refer the
reader to [10, §15.2], for example, where the scalar case is treated.

Another important representation in the theory of vector-valued modular forms is
the Schrodinger representation. It is typically a representation of the Heisenberg group
on the group algebra C[D] of some finite quadratic module D. Let H be the Helsenberg
group Z> with the following composition law:

(m,n,)m",n',t')y=m+m',n+n',t+1t +mn’ —nm').

DeriNiTION 1.47 (Schrodinger representation). Let L be a positive-definite, even lat-
tice over Z and let x € L*/L. The Schrodinger representation of H on C[L"/L] twisted
at x is the representation o : H — Aut(C[L*/L]) defined by

o(m,n,t)e, ;= e(nf(x,y) + (t — mn)B(x)) ey_y.
We check that o, is indeed a representation: we have 0,(0,0,0) = Iy and, for
arbitrary elements (m, n, 1) and (m’,n’,t") of H, we have
(ox(m,n, t)o(m', 1, 1)) &y =0 (m, n, e (W'B(x,y) + (t' — m'n")B(x)) ey_prx
=e (n'B(x,y) + (' — m'n")B(x))
X e(nB(x,y — m'x) + (t — mn)BX)) &ymrx-mx
=e((n+n)B(x,y) + (t + 1 +mn' — nm’
= (m + m')(n + n")B(x))ey—nsmyx
=0 ((m,n, ) (m’,n’, 1)) ¢,.
Every element (m, n, t) of H can be written as a product
(m,0,0)(0,n,0)0,0,1).
We remind the reader that a representation 7 : G — Aut(V) is unitary if and only

if Tg)’n(g) = Ijimv) for all g in G. Let {yy,..., Y4y} denote the elements of LTS
Then o,(1,0,0)e¢,, = ¢,_, and therefore the matrix of o(1, 0, 0) is a permutation matrix
(hence it is unitary). Furthermore, o (0, 1,0)e¢,, = e(B(x,y:))e,, and (0,0, l)e,, =
e(B(x))e,,, therefore their matrices are diagonal with diagonal entries of modulus equal
to one (hence they are unitary). It follows that o is unitary.
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Define the following right-action of I' on H, for every A = (¢ 4)inT:
((m,n,1),A) - (m,n,t)* = (ma + nc,mb + nd, 1).

Lemma 1.48. For every A in T and every (m,n, t) in H, the following relation holds
between the Weil and the Schradinger representations:

(1.32) pL(A)  o(m, n, DpL(A) = o ((m,n, ).
Proor. Check that (1.32) holds for the generators 7 and S of T:

pé(f’)_'o'_‘-(m, n, t)pé(f")e). :pé(f")' ' o (m,n, He(B(y))e,
=pr(T)'e (nB(x, ) + (t = mn)B(x) + B()) &y
=e (nB(x,y) + (t — mn)B(x) + B(y) — B(y — mx)) ¢y_py
=e((m + n)B(x,y) + (t — m(m + n))B(x))ey_py
=o((m,n, I)T)L‘_r.
For §, it suffices to check that equality holds for the three generators of H. We include

the calculations in one of the three cases, since the rest can be treated analogously:

k(L)
fE=n)

pL8Y 7:(1,0,0048)ey = ($) 1 o(1,0.00——— B (=B s

27 seltL

. Tk(L)
I 2

=p(S)7

Z e(—B(y, 5))es—x

det(L)* sel*/L

e S e~ xr) ~ B0, e

det(L) sel?/L rel*/L

D e=Blere D eBr—y,)

rel? /L seL¥[L
=e(—B(x,y))e, = o:((1,0,0)% )e,,

where we have used the fact that, for every y in L*/L, we have

" det(L)

D, B =

sel#[L

det(L), ify=0and
0, otherwise.

Since o, is unitary, its dual representation is obtained by complex conjugation:

o(m,n, e, = e(—nP(x,y) + (mn — HB(X)) ey_px-

Taking complex conjugates on both sides of (1.32), we obtain the following relation
between the duals of the Schrédinger and the Weil representations:

pg(ﬁ)"o‘:’.(m, n, r)p;(f{) = o, ((m,n, 1)
and therefore
(1.33) oy(m,n, 1) = pp (Ao ((m,n, )" (A) 7.

We will use the Schridinger representation in Section 2.4 to define an averaging oper-
ator on Jy p.
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1.2.4.4. Jacobi forms and orthogonal modular forms. The connection between Ja-
cobi forms and orthogonal modular forms bears similarities to that between the former
and Siegel modular forms. It is, however, more natural, in the sense that it does not
depend on the choice of a basis. Orthogonal modular forms have many applications in
algebraic geometry. For example, they can be the automorphic discriminants of moduli
spaces [17], which allows for the construction of modular varieties [21].

Let (L, (+,+)o) be an even lattice of signature (2, g + 2), which contains two hyper-
bolic planes:

Ly=Uya U, & L(-1),

where L is a positive-definite, even lattice of rank g with bilinear form (-,-). Set rt =
%(r, r) for every r in L ®z C. Fix a Z-basis {eg, ey, ..., g2, €443} Of Ly such that Uy =
Zeg ® Zegys, Uy = Zey ® Zeg,r and {...} is a basis of L. In other words, we have
e — "ﬁu = e§;+3 = 0 and (ep, €z43)0 = (€1, €g42)0 = 1. The Gram matrix of (-, )
with respect to this basis is then equal to

/)c)afw
Fﬂﬂmn?

OF OO i 00
;;LZ[;W 050108 . Of 10
00 0 0
e -G ool
0 0 0 0
OESTH L0 =St 0800
S0 R s (1 L )

where G denotes the Gram matrix of L. Let D(Ly) denote the (g + 2)-dimensional
bounded symmetric Hermitian domain of type IV associated with Lo, i.e. one of the
two connected components of the set

{[Z1 € BLo®2©) : (Z.200 = 0.(Z.2)0 > 0.

The two connected components of this set are mapped isomorphically to each other
by complex conjugation. Let O*(L, ®z R) denote the index 2 subgroup of the real
orthogonal group which preserves (L) (it is the connected component of the identity
of the real orthogonal group of Ly). The “+” in the notation marks our chosen connected
component. Denote by O*(Ly) the stabilizer of L, inside the subgroup O* (Lo ®z R), i.e.
the intersection O(Ly) N O*(Ly ®z R). This is an arithmetic group.

The domain D(Ly) can be realized as a tube domain inside C#**. Let F denote the
totally isotropic plane spanned by ¢, and e, set L, := Ze| & L @ Ze,.» and define

H(Ly) :=1{Z = esﬁxL@;Cij:%(ﬁ(Z),ﬁ(Z))]>0 ,

G L

where (-, -); denotes the restriction of (-, -)y to L;. Note that (Z,Z), = 2wt — (z,2). The
embedding
-3(Z.2),
w
pr:Z e pr(Z) = Z
=
1
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of H(Ly) into P(Ly ® C) defines an isomorphism between H (L) and D(L,) depending
on F (and note that F corresponds to a one-dimensional cusp in the modular variety
S O (Lo)\D(Ly)).

The group O*(Ly) acts on H(L,) from the left via

7pr(Z))
Jv.2))’

where the holomorphic automorphy factor on H(Ly) with respect to O"(Ly) is defined
as the bottom entry of ypr(Z):

(v, 2) — KZ) = pr*'(

I g+2
Jy,Z) = —;Vg+4,|(Z, L)1 + Ygrapw + Z Yerd,jZj—2 t Vord ge3T T Verd g+a-
2 =
For every integer k, define a right-action of O*(Ly) on the space of functions ¢ :
H(Ly) — C in the following way:

0, y) = Yly(Z) = J(y, ) Y(H(Z)).
A modular form of weight k with respect to O*(Ly) is a holomorphic function ¢ :
H(Ly) — C which satisfies
(1.34) Uy (2) = Y(Z)

for every y in O"(Ly). An analogous definition works to define orthogonal modular
forms with respect to every finite index subgroup of O*(Lg).

Since the orthogonal group O*(Ly ®z R) has rank equal to 2, there are two types of
maximal parabolic subgroups in O*(L) and hence two types of Fourier expansions of
orthogonal modular forms:

W(Z) = Z (e ((A,Z),) and

Aelf
iAeH(Ly),(4,4)1 20
w
vz =Z¢m('nz)e(mw).
T m=0

The latter is called the Fourier-Jacobi expansion of an orthogonal modular form.
Let P denote the parabolic subgroup of O*(Ly ®z R) which preserves F, i.e.

A" B, E;T
Pri={l0 U B |e0'Wye:R)},
ofa 4

A€ GLI(R),U € 0" (L®R), B € M»(R), A" = E5(A")™'
E,, B, = E;(A) 'B'GU,T'A + A'T = B'GB.

The real Jacobi group O is the subgroup of Py which acts trivially on L. It has no
anisotropic part U and it is generated by the following elements:

(A} := diag(A", I,,A),A € SLy(R) and

1 0 ¥G (y)—r 30,7

0 A5G %(x,x) r
{oyirk =10 0 U, X y .

g0 0 | 0

0 0 ell) 0 1
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where x,y € M, ;(R) and r € R. It is clear that {A} € Pr. To check that {x,y; r} € P as
well, consider B = (x, y) and A = E; in the above, in order to obtain that B, = E,B'G =
( ,G) and that

xX'Gx x'Gy
B Ti=5GB = 3
+ G (yer ).l'Gy)

Write 7 = (¢ 4) and therefore a = ,(,\ X)pdi= 7(y,y), b =randc = (x,y)—r and hence
{x,y;r} € PP The Jacobi group has a subgroup isomorphic to I" (the isomorphism is
given by the map A — {A}). By abuse of notation, we denote this subgroup by I'
The elements {x, y; r} act trivially on F. They generate a normal subgroup of Oy which
is isomorphic to the Heisenberg group H(L ®z R) of dimension 2g + 1. The center
of H(L ®; R) is equal to {{0,0;¢} : t € R}. Hence, the Heisenberg group is the central
extension of (L ®z R)*:

0-R->HL®R)—> (L&:zR)X(L&zR)— 0.

The modular group SL’;(R) acts on H(L ® ) by conjugation: —/ (7; ﬁ,Z
T &yl Pperide
N seeed ol [~ )Gy {fom (x,y;7) = {A}[A/y, At atr e vy

, y s
The integral Jacobi group O’ is the intersection O’ N O*(Ly) and it is isomorpHic to the

semidirect product I =< H(L). Let k and m be positive integers.

WA Jacobi form of weight k and index m for L is a holomorphic

function ¢ : $ X (L ®; C) — C such that the function

w

N[ ThA 32) = ¢(r, emw), Z = | z | € Hyr
ery 1 vk :

_is a modular form of weight k with respect FE’,QJ . Denote the C-vector space of all such
functions by J;,( g

It is also possible to define Jacobi forms with character in this way [17]. It is easy
to check that Jy,,(L) = Jy 1o for every positive-definite, even lattice (L, (-, -)) (see Def-
inition 1.7). For example, for every A = (9%) in ', we have

IHAKZ) = 9| =

and, for every {x, y; r} in H(L), we have

W+ (X,2) + 2, 0T+
d({x,yirKZ) = ¢ Z+TX+Y
-

Note that the integral Heisenberg group defined in Section 1.2.3 is isomorphic to the
quotient of the integral Heisenberg group defined in this subsection modulo its center,
in other words H(Z) =~ H(L)/{{0,0;n} : n € Z}. The group H*(Z) is sometimes called
the reduced Heisenberg group in the literature. The center of H(L) acts trivially on
Jacobi forms. Using the modularity condition (1.34) for ¢ and the above equations, it
is possible to recover the modularity of ¢ as given by Definition 1.26, (1). We will use
the notions discussed in this subsection in Chapter 4.
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1.2.5. Examples of Jacobi forms. We have seen some examples of Jacobi forms
of scalar index in Subsection 1.2.4.1. We list examples of Jacobi forms for some of the
lattices in Example 1.6, as given in [21]. We remind the reader of the definitions of the
Dedekind n-function (1.6) and the scalar Jacobi theta series (1.27).

ExampLE 1.50. For every nin N, tin $and z = (z3,...,2,) in C", define
({1=35) Dan(T,2) 1= (1, 21) ... (7, Z,).

For 1 < n < 8, the following function is a Jacobi form of weight 12 — n for the lattice
Dy

Y12-n,(7,2) 5= N0z (7, 2).
When n = 8, this is a Jacobi form of singular weight for Dg. For n < 7, the function
Wi2-n.n, 18 @ cusp form. It is well-known that D3 = A3 and hence we also obtain a cusp
form of weight 9 for A;.

ExampLE 1.51. The function

Wan(1,2) =1, 21) ... N T z2) (T, 20 + -+ + 27)

is an element of Jy 4, (we have written z = (zy,...,27)). Set
v 7 i 7,22 ) 1 + 2
O4,(T, 21, 22) = (7, 20)9(7, 22)0(T, 21 + 2 ).
n(t)

Then € J,.A:(vg) and
Yo, :=1'0(1)O14,(T: 21, 22)
is an element of S 4,. We also have that
W624,(7, 2) = P (1)O1 4, (T, 21, 22)O 1.4, (T, 23, 24) € S0,
(where 24, = A, @ A,) and that
W334,(T,2) = O1.4,(T, 21, 22)O1.4,(7, 23, 24)O1 4, (T, 25, Z6) € J334,-

Examples 1.50 and 1.51 are part of the theory of theta blocks developed in [22].
Here is another example from [20]:

ExampLE 1.52. Bearing in mind the modularity properties of theta series (1.19) and
the fact that Eg is a unimodular lattice, the theta series

(1.36) (2] = Z e( (r;) +(r, z))

re f'.'};

is an element of J, g,. This is a Jacobi form of singular weight for Eg. Furthermore, fix
an element x in Eg and set (x, x) = 2m. Then the following function defined on $ X C is
a Jacobi form of weight 4 and scalar index m:

ﬁ[‘.‘x._t(‘rv Z) = ﬁEK(T7 Zx)‘
It has a Fourier expansion of the form
Ip D) =1+ D aln,De(nr +12),
n=0.1eZ
where
a(n,l) =#{ye Eg : (y,y) =nand (x,y) =1}.

Note that the scalar Eisenstein series E4 ¢ is equal to ﬁgx.(; _____ 1y
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In general, if L is an even, unimodular lattice, then

Fpo(t,2) = Z e(B(r)T + B(r, 2))

rel

is a Jacobi form of singular weight rk,(,—-m and index L. The type of construction we
encountered in the last example can be extended to arbitrary lattices in the following
way: let ¢ € J;; and A € L; for a variable z in C, the function ¢(7, z4) is a Jacobi form
of weight k and scalar index S(A).
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Lemma 3.34 implies that W, = W(s") for every t || m and, conversely, that every
operator W(s') (f> = 1 mod 4m) is equal to W, for some n || m (the reader can consult
the forward direction in the proof of the lemma for the precise recipe for finding n). The
operators W, are called Atkin—Lehner involutions in [38], because they play the role of
Atkin—Lehner involutions for elliptic modular forms on the side of Jacobi forms. More
precisely, the following holds:

te(T() o W,, Jiw) = e(T(1) 0 Wy, Nty _,(m)),

It was shown in [3, §1.2] that the orthogonal groups of cyclic finite quadratic modules
over number fields consist entirely of such operators W,.

For the remainder of this section, we study roots of lattices and the corresponding
elements in the discriminant module. An element A in L is said to be primitive if,
whenever 4 = my for some m in Z and some y in L, we have m = +1. For every

primitive element A in L, define the reflection map through A as / fease s L
Sa(x)= x—ﬁ(x’ /1)/1. i #w e
5 D)
DEFINITION 3.3@ o is-a-primitive element @ of L such that reflection
through a is an autpmorphism of L.

Prorosition 3.37. If @ is a root of L, then the following hold:
(i) Forevery x in L, we have (@) | B(x, @).
(ii) Let {a) denote the linear span of « inside L and let a* denote the orthogonal
complement of @ with respect to 3 inside L. Then (@) N a* = {0}.
(iii) The automorphism s, is an involution.
(iv) If v is another root of L, then s,(y) is also a root.

Proor. (i) Since s, is an automorphism of L, we have

Blx, @)
Bla)

for all x in L. It follows that %af € L for all x in L. Suppose that B
integers m and n such that (m,n) = 1. Then @ = T A for some A in L. Since (m,n) = 1,
we have A/n = u € L and therefore @ = mu. Since a is primitive, this implies that

m = +1 and hence &9 ¢ 7.
pla)

(ii) Suppose that g € (@) N a* and that u # 0. Then u = aa for some a in Z \ {0} and
By, @) = 0, implying that (@, @) = 0. For every x in L, we have B(x, u) = af(x, @) =
B(a)n by the above, for some n in Z. Since S(a) = 0, it follows that S(x, @) = 0 for every
x in L and, since S is non-degenerate, this implies that @ = 0, which is a contradiction.
Hence, (@) N a* = {0}.

(iff) We have

o€

Bxa) _ 2 for some

a=x a
Bla) B(a) Bla)
k=a; B(x, a')a < B (x, af)a . Blx, a')ﬁ’(a,a')a -
Bla) Bla) Bla) p(a)

and hence s, is an involution.

Bl @) _ Bx,@) B(x - &g, cr)a

Sq O Scr(x) :Sn(-x) =

(iv) Suppose that s,(y) = mu, with m in Z and g in L. Since s, is an involution, we have

Y = Sq © So(y) = ms,(u)

e
o 4

Wt} ;/—‘/\C ~ /wm -
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and, since vy is a root and therefore primitive, we have m = 1. It follows that s,(y) is

primitive.
For every x in L, we have
S B s
B (S.s',,(y}(-f\)) =p (A = m&a(?))
oy BE S, B s o o
=p(x) 50) B(x, 54(¥)) + 5)? B (sa(¥)) = B(x)

and therefore § o s, (5, = 3.

Suppose that s;,,)(x) = 0. Then x = '9%‘3%‘;%7—”5(,()/) € L. Since s,(y) is primitive,
it follows from the same argument as in (i) that W € Z. Write x = ts,(y) for

simplicity, where ¢ := 2550 Thep

B)
(g Bsa(y), S-:r('}’))sﬂ(_y) = 2 ()
B)

Since s,(y) =0 & vy =0, it follows that r = 0, i.e. that x = 0 and s, is injective.
To show that it is surjective, it suffices to prove that it is an involution. We have

ﬁ Sn('}’), s.\‘(,( )(JC)
S5a(y) ("-\",(y)(-"')) =Ssu0(X) = ( 50) ’ )SQ(Y)
Mol B(x, sa(¥)) S B(sa(y), X)
B) B)
o) B ($a(¥), $2(¥)) B(x, 5a(y))
Bly)?

It follows that s, (,) is an automorphism of L and hence that s,(y) is a root. m|

So(¥)

Sa(y) = x

A consequence of Proposition 3.37, (i) is the following result from [33, §2]:
ProposiTioN 3.38. Let a be a root. Then B(a) | lev(L) and a € L N B(a)L*.

Proor. Set ¢t := B(a) for simplicity. Since S(@) | B(x, @) for all x in L, we have
B(x,a/t) € Z for all x in L, in other words a/t € L¥. Furthermore, lev(@)it =
lev(L)B(a/t) € Z and therefore ¢ | lev(L). O

The converse result, which we cite without proof, is the following:

ProposiTion 3.39. If « in L is such that B(a) = t for some divisor t of lev(L) and
a € LN tL¥, then either a is a root or a2 is a root.

A root lattice is a positive-definite, even lattice which is spanned by roots. The
lattices in Example 1.6, (1), (3), (4) and (5) are root lattices.
On the side of discriminant modules of lattices, we have the following:

DEerNITION 3.40 (Corresponding to roots). Let a in L*/L be such that 8(a) = 1/t mod
Z, for some divisor 7 of lev(L). We say that a corresponds to roots if N, | t and if,
provided there is an @ in L such that @ = ta and S(a) = ¢, then « is a root.

Remark .14 implies that N, | f and ¢ | 2N, if a corresponds to roots. It follows
that either lev(a) = 2N, or lev(a) = N,. In the former case we obtain that ta/2 € L
and therefore a cannot correspond to a root @ = fa, since ta is not primitive. Thus, if a
corresponds to a root @, then N, = lev(a) = ¢ necessarily. The converse also holds:

Prorosition 3.41. If a in L*/L is such that B(a) = 1/N, mod Z, then a corresponds
to roots.
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Proor. If no @ = N,a exists such that S(«) = N, and @ € L, then we are done.
Otherwise, Proposition 3.39 implies that either @ or a/2 is a root. Suppose that @ = mu
for some m in Z and some g in L. Then N, = B(a) = m*B(u) € Z, implying that m | N,,.
It follows that 4 = a/m = (N,/m)a = 0 in L*/L and therefore N, | (N,/m). This implies

that m = +1 and hence « is primitive and a corresponds to «. o/ - ‘
P p /WZ;{)( J‘{d rr.a—v[./ VZ%

We introduce some additional notions from [41]: o ﬂ}, “g /m Al

DEeriNiTION 3.42 (Admissible element). An element a of L#/L is called ddmmlble if

O (3.16) B(r,a) = q(r)B(a) mod Z /7 [caed P oo gayd
| e li 0 7

for some integer ¢,(r) for all rin L*/L. / “ve € 9" [t om ’//
j : ; i /1/ #‘W A e

We prove certain properties of admissible elements, some of which are listed in [
; | [41]; o {
ot n %

4 Lemma 3.43. If a is admissible, then the map ¢, : L' |L — Zeyay, defined by ? L f_"_v_l_

Lﬂvf B(r, ) = ¢a(r)B(a) mod Z, S 0
%J{'l L is a group homomorphism.

et jﬁ Proor. Since a is admissible, we have B(r,a) = ¢,(r)B(a) mod Z for some integer
V j ’ @q(r) by definition. Since L*/L is an additive group, it follows that ¢,(r; +r2) = @a(r)+
@a(ra) for all ry, ry in L* /L. We have (¢.(r) + nlev(a))B(a) = p.(r)B(a) mod Z for every

n in Z and therefore ¢,(r) can be reduced modulo lev(a). O

Note that ¢,(a) = 2 mod lev(a) for every admissible element a.

Prorosition 3.44. An element a is admissible if and only if N, = lev(a) or 2N, =
lev(a).

Proor. Suppose that a is admissible. Then B(r,a) = ¢.(r)B(a) mod Z for some
integer @,(r) for all r € L¥/L, implying that B(r, lev(a)a) € Z for all r in L*/L. Since
B is non-degenerate, this implies that lev(a)a = 0 in L*/L. Tt follows that N, | lev(a).
We remind the reader that lev(r) | 2N, for every r in L*/L and thus N, = lev(a) or
2N, = lev(a).

For the converse statement, the two cases can be treated similarly and therefore we
only include the proof when N, = lev(a) = t. Let r be an arbitrary element of L*/L.
Since ta € L, we have t83(r,a) € Z and therefore 5(r,a) = ./t for some ¢, in Z. Since
lev(a) = t, we have t8(a) = m for some m in Z which is coprime to r. It follows that
there exist integers u and v such that um + vt = 1 and therefore ut,m + vt,t = t, and
t./t = ut,m/t mod Z. In other words, we have B(r, a) = w.(r)B(a) mod Z for every r in
L*/L, where ¢,(r) = ulev(a)B(r,a) mod lev(a), and hence a is admissible.

Note that, if we consider the case where 2N, = lev(a), then we also obtain that

wa(r) = ulev(a)B(r,a) mod lev(a),
where u is such that um + vlev(a) = 1 and m is such that B(a) = m/ lev(a). O
For every a in L¥/L, let {a) denote its Z-span.

ProposiTion 3.45. If a has odd order, then it is admissible if and only if Bl is non-
degenerate.

Proor. Use the last proposition and instead prove that N, = lev(a) if and only if
Bl is non-degenerate. Suppose that N, = lev(a) = t. Let ma in {a) be such that
Bay, ma) = 0. It follows that S(a, ma) = 0 and consequently that 2m is a multiple of
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t. Since t is odd, this is equivalent to 7 | m, which implies that ma = 0 in {@). In other
words, ., is non-degenerate. '

Conversely, suppose that |, is non-degenerate. Then, if S({a), ma) = 0 for some
m in Z, then ma = 0 and therefore N, | m. In particular, it follows that N, | lev(a)
and, considering that lev(a) | N, when N, is odd (Remark 1.14), we obtain the desired
equality. 0

REMARK 3.46. The same result does not hold if N, is even and equal to lev(a) be-
cause, in the forward direction, we can take m = N,/2 and obtain that S is degenerate.
However, the converse proof still works to show that, if S|, is non-degenerate, then
2N, = lev(a) or N, = lev(a) and therefore that a is admissible. It can also be shown
that, if N, is even and equal to lev(a)/2, then f3., is non-degenerate.

Lemma 3.47. An element a in L | L which corresponds to roots is admissible.

Proor. This is a consequence of Proposition 3.44 and of the fact that, if a corre-
sponds to roots, then either lev(a) = 2N, or lev(a) = N,. O

The converse of Lemma 3.47 need not hold, since it is not necessarily implied that
B(a) = 1/ lev(a) mod Z if a is admissible.

DermNiTioN 3.48 (Reflection map). For every admissible element a in L?/L, define
the reflection map through a as the function s, : L*/L — L*¥/L,

8a(r) =1 = @q(ra.
ProposiTion 3.49. The map s, is an element of O(Dy) and an involution.

Proor. Let us first show that s, is invariant under :

B o sa(r) = B(r — @a(r)a) = B(r) — @a(H)B(r, @) + 3(r)B(a) = B(r) mod Z,
since the last two terms cancel out modulo Z. It is clear that s5,(-) is a homomorphism,
since @,(+) is one. To show that it is injective, assume that s,(r) = 0. Then r = ¢,(r)a
and it follows that ¢, (r) = @.(r)g.(a) = 2¢.(r). Hence, ¢,(r) = 0 and therefore r = 0.
To show that s,(-) is surjective, it suffices to prove that it is an involution. We have

50 8a(r) = 1 —@u(r)a — @a(r — wa(r)a)a = r — 2pq(r)a + p(r)pa)a = r,
since pq(a) = 2. O

Note that, if @ = 0, then s, is the trivial automorphism. If a corresponds to roots,
then we can take # = 1 in the proof of Proposition 3.44 and we obtain that

Sa(r) = r—lev(a)B(r,a)a.
Furthermore, if a corresponds to a root a in L, then

B(r,a)
Bla)

The following result is a consequence of the above Proposition:

sa(r)=r— a = si(r)

CoroLLARY 3.50. For every admissible a in L"[L, the operator W(s,) is Hermitian.
Furthermore, Proposition 3.31 implies that W(sa)Eg1.r = Ep L so(r).-

In view of Theorem 3.11, the following holds:

CoroLLARY 3.51. Twisted Eisenstein series are common eigenforms of Hecke oper-
ators and operators arising from the action of reflection maps.
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hence a = (a;, a,2") with a; and a, odd and 0 < ¢ < n. In view of Proposition 3.53,
we can assume that (a;,a;) = 1. We have B(a) = (a} + 2'aja, + 2*a ’)/2” and B(r,a) =
2ar +2’“a3r3 +alr2+2’a2r1)/2” forr = (r1, r2) in Z(?_!x)XZ(gn). Since (Il +2'ayas +2“’a2
is coprime to 2", let # and v in Z be such that

(3.17) u(a% +2'aia; + 22'51%) + 92" = 1.

Then, @.(r) = u(2a,ry + 2" ary + ayry + 2'ayr;) and therefore

Sa(r) :(r ) —uQayr; +2"* (hh +ayr+2 aqr])( azr)
L)
i ri[l = u2a; + 2'ajay)] — nu(2*'aya; + ay)
S\rs u(Zg‘“a% + 2'aia,)] — i@t aas + 22’a§)] :
Use (3.17) to write the last expression as:

r,u(2”a§ - af) — ru2*aja, + af)
—ru2*'aa, + 2% ad)] + rau(al - 2%a3))’

Sa(r) :(

Admissible elements of the form a = (a,2', a,) gives rise to reflection maps

Sl rlu(ag - 22’(:?) + r2[11(22’af + 2&%) -2]
T \nu(2*al - a3) + n[u*'al + a3) - 2])°

where u and v are such that
u@¥at +2'ajay + az) +v2" = 1.

The case lev(a) = 2N, cannot happen for this type of Jordan constituent, which follows

from analyzing (a). ) &
. Xy .. ) Vz
ExampLE 3.57. In the Jordan constituent Con = (Zgny X Zny), 57), every admissible
element a of norm N, = 2 is of the form (m;2" %, m,2"**"), where k < n and t <kand )19\(
m; and m, are odd. Then B(a) = m;m,2"~***" and, assuming that lev(L) = N, = 2*, we i

must have n — k + ¢ = 0 by the same reasoning as above. It follows that t = O and k=n, /z[[ Amk
i.e. thata = (a,,a,) with @, and a, odd (we may also assume that they are coprime). We J )k

have B(a) = aya,/2" and B(r, a) = (rja; + ra,)/2" for every r = (ry, r2) In Zjny X Zany.
Hence, ¢,(r) = u(ra; + raa;), where u and v are such that ua;a, + v2" = 1, and

ﬁﬁ] m gt
sq(r) = (;') — u(ra; + ,.m])(zl) = ("’1(l — uaaz) — rguaz) & (s

r2(1 — uayaz) — ryua;

e ; _1 i iy hy ,,/

(k= :J_Ifa] r —haa, | —haa,

(—rluag) (—rlal"ag) (—rl(alagl)‘l) ; M @ end

where x~! denotes the inverse of x modulo 2". The case lev(a) = 2N, cannot happen for br

this type of Jordan constituent either. A}’/ J 'z
3.3. Jacobi forms of index D, and elliptic modular forms Con ‘/4 Yivns

: : : D °7th
In this section, we compute the Hecke eigenvalues of Jacobi cusp forms of weight "f

k and index D, for small values of k and odd n. We remind the reader of the definition
of D, given in Example 1.6, (3): Conts) lv/i, ‘c

DJI:{(xl,A-.,_X”)EZ”:X[+"'+x”622}' Mf Jaz\h /V:."!
It is straight-forward to check that

Dy = {x er”orxe(‘ +Z)”}
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and therefore

EiFria-e eyt v igaty —p
# 1 n 1 n-1 n
D,,/Dn = {O; €ns }s

2 : 2
where {¢;}; denotes the standard basis of Z". Thus,
#1D, =~ Z[4Z, if n is odd and
" |Z/2ZxZ/2Z, ifniseven.

Suppose that 1 is odd. Then the discriminant module associated with D,, is isomorphic
to

(2/42, e % mod z)

and lev(D,) = 8. It follows that D, is stably isomorphic to D,, for every odd m and n
such that n = m mod 8 and, in view of Theorem 1.37, that Ji 21 p, = Jiirz1p, for such
m and n. Hence, it suffices to consider n = 1,3, 5 and 7 in this subsection.

In the following paragraphs, we introduce some building blocks for Jacobi forms.
The Dedekind n-function was defined in (1.6). It is well-known that

(3.18) 1]3(1'):%2( )nq'T = 22( '2n + g+

neZ neZ

The scalar Jacobi theta series (7, z) was defined in (1.27) and the Jacobi theta series
¥z0(T, 7) was defined in (1.35). We remind the reader of the definition of the unimodular
lattice Eg given in Example 1.6, (5) and of that of the Jacobi theta series ¥, (1, z) given
in (1.36). Let E,\ (k = 4) denote the Eisenstein series of weight k for I,

EK(T) =1 ——ZCT;\ 1 H

nzl1
and let E, denote the quasi-modular Eisenstein series of weight 2 for I,
Ey(1):=1-24 Z o (n)g".
nzl1

The discriminant modular form, denoted by A, is a cusp form of weight 12 for I'. It has
the following Fourier expansion:

A@ = ) 1(n)g"
nxl

where 7(n) is the Ramanujan tau function.
The differential operator d : Ji; — Ji.oy is defined in [4] for every ¢ with theta -
expansion (1.20) as

d
(19  HE@D= ), (]d—qhm('r))??l AT,2) - (k—L))Ea(m&(f 2.

)
xel#/L

If f(r) € M, (') and ¢(1,2) € Ji, 1, with Fourier expansions },.oas(n)g" and (1.13),
respectively, then it is easy to check that f(7)¢(7,2) € Jy, 44, and that

[-D]
@20 = ) ( D CoD+n, r)a_f-(n))e((ﬁ(r) — D)t +B(r,2)).

(D.r)esupp(L) * n=0
Forn = 1,3,5 and 7, let @, denote the following embedding of D, into Ejg:
(X],...,.l'”) = (0,...,0,.1_1,...,)(”).
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This map can be extended in a natural way to the underlying complex spaces. Its pull-
back on spaces of Jacobi forms of weight & is the map «;, : Jyg, — Jin,»

Q’:Qﬁ(‘l’, 2) = ¢(x, aﬂ(Z))-

3.3.1. Generators and their Fourier expansions. The generators of the spaces
Jip, (n=1,3,5 and 7) were listed in [4]. We compute their Fourier expansions in this
subsection.

We remind the reader that the Jacobi forms ¢>_, p, were defined in Example 1.50.
Set

e, *
E4.Uu = ﬂ’"ﬂg“,
EG_])" = 6E4!D" and
Egp, = 0Ep,.

Let o3 denote the following embedding of Ds into Z*:
1
(&0 = —(x+y—z,x—y+z,—x+y+z,—x—y—z)
and denote its pu]lback on spaces of Jacobi forms by o7.

THEOREM 3. 58( Ezefollowmg holds forn =1,3,5 and 7:

(3.21) Jok+1,0, = M.(D)Yr12-p,-
Forn =1,5and’7, we have
(3.22) Jowp, = M.(1)Esp, ® M.(1)Esp, ® M.(1)Eg p,

and, lastly,
(3.23) Jaeps = MA(D)Eqp, ® M.(1)Eg p, ® M.(1)'20% 0.
By definition,

2 95
= bty Zibr b aZa
9,0 = 3 () o 5r + aeees)

rez’
and therefore, using (3.18),
3 | —4 n%+---+n§_"+mf+---+mﬁ Mz Lz,
Y12-0.,(7, 2) —F (m) Ny .. .Ng—p€ g T+ >

N yeesNE—n,
my,...my€ZL

re(1+z)" xe(1+z)"™"

% e(((”) + (“))T-!- (r, z))

Z Ch’/ll—r:_.’),, (D, r)e ((% = D) T+ (r, Z)) -

reDy DeQy
&0 _pez

where
0, if r € Z" and

B = Z (_])”+"'+r"+x'+"'+x"’”xl i Xgiys AFRE (% iy Z)" .

.\'e(%+2)x_"
f[):('%ﬂ

C.y;-.

2-n,Dy
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We have made the substitutions x; = 2 and r; = %'. The value of the expression
(=), ... x, does not change under the substitution x; := —x; and therefore
0, if r e Z" and
P e = n
Cw] f (D r) 3 23—n Z (_l)rl+-.-+rﬂ+.\|+ +"37".X'| S ifre (% o Z) :
2-n.Dp ?
xe(L+10)*"
—U:"‘:,;ﬂ
We have
Eyp,(1,2) = Z € (%T +rg_pe1Z1 toe i’szn)
I'Ef‘..g
2 2 2 porp 2
£ Z Z L(( i i )T)
(PSoniloeon r,;)eZ”LJ(%+Z)" (FlyensPg—n)ERE
- (J‘| el )EEY
X e(rg-ns121 + -+ 1r32y)
2 (r.r) A
=0p,00)+ Y CanD,e((% - D)7+ (r2),
reDi.DeQy
(rr) =
T*J’)EL
where
#{xEZS‘”:—-2D:xf+---+x§_” : reZ"and

. Can(D,r) =

n

#!xe Z8": 2D = X} + x +---+,x§,”+x3_,,+¥], re (% +Z)
Equations (3.19) and (3.20) imply that

Eop, ()= . (=D)Cin(D,ne((%2 - D)7+ ()
reDf.DeQq

0 _pez

8—n

Z Can(D,r)e ((“Tr) - D) T+ (7, Z))

reDf,DeQq

U0 _pez
+@B-m Y oihgd Y. CanD,e((LL - D)7+ (r2))
=1 reDf,DeQu

&0 _Dpez

:n.2—48 Ip,0(1,2) + E Con(D, r)e ((('T” < D) T Z)) :
reD;.DeQ
L0 _pez

where

[=D]

8—n
ConDir)i= = (D o 7) Ci (D, 1)+ (6—n) ; Can(D + 1, r)a1(D).



CHAPTER 4

Level raising operators

We define a generalization of the operators U; and V; from [14, §1.4] for Jacobi
forms of lattice index and study some of their properties. Given the terminology on one
hand and the connection between Jacobi forms and elliptic modular forms conjectured
in [1, §6.1.1] on the other, the level of a Jacobi form should be the level of the lattice
in its index. This is supported by results from [31], which state that the space of Jacobi
newforms of weight k and scalar index 1 for I'o(N) which is invariant with respect to the
action of a certain Atkin—Lehner operator is isomorphic to the space of Jacobi newforms
of weight k and scalar index N for I' as modules over the Hecke algebra (for every odd,
square-free N).

4.1. The U operators

These operators arise from isometries of lattices (see end of Subsection 1.2.2):

DerFinition 4.1. Let L, and L, bet two positive-definite, even lattices over Z such
that there exists and isometry o of L, into L,. Define a linear operator

Uo) : Jip, — {¢: 9% (L ® C) — C: ¢ is holomorphic}

as

U(@)é(, 21) := ¢(7, 0(21)).
This operator satisfies the following:

Lemma 4.2, Let o be an isometry of L, into L,. For every ¢ in Ji1,, the function
U(o)¢ is invariant with respect to the | 1, -action of o

Proor. For every A in I', we have

2]
ct+d

(U@, AT, 21) =U()p (AT, —Cﬁi(a))

—k
)(cr+d) e( T

S o(z1) i =epa (a(z1)
_¢(Ar’cr+d)(cr+d) e( ct+d )

=@l L, AT, 0(21)) = ¢(7, 0(21)) = U(0)g(T, 21),

since 8, o o = ) and ¢ is a Jacobi form of weight k and index L,.
On the other hand, for every (4, u) in H:(Z), we have

(U()P)IL, (A, u)(1, 21) =U(0)p(T, 21 + AT + p)e(7h1(A) + Bi(4, 21))
=¢ (1,0(z1) + T0(A) + o (W) e (12 (o (D)) + B2 (0(A), 0(z1)))
=¢|.,(0(1), o()(7, 0(21))
=¢(t,0(21)) = U(o)g(7, 21),

since 8, o o = 1 and ¢ is a Jacobi form of index L,. It follows that U(c)¢ is invariant
under the |, . -action of J&, as claimed. m]

117
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We would like for U(o)¢ to be a Jacobi form of weight k and index L,. If ¢ in Jy 1,
has a Fourier expansion of the type

drm) = Y cyln,r)e(nt +Ba(r, ),
neZ,rmell

nzfa(r2)
then
U@)(r,2) = pr,o@) = D cyln,rle(nt +Ba(rs, o(21))).

nEZ,r‘3€L§

n2pa(ra)
We need B1(r2, 0(z1)) = Bi(r1, z1) for some ry in LY for every r, ir{ L’ such that c,(n, r2_) is
non-zero in order for U(c)¢ to have the correct Fourier expansion. One case in which
this condition holds is when o is surjective and we can make the change of variable
¥ = o~ (r) in the above equation.

Assume that o is surjective on L%, Then o : o '(L}) — L} is a Z-module isomor-

phism and, furthermore,

o\ (A ={reL ®Q:p(x,0(r)) € Z for all x in L,}
— forevery rino' (Lﬁ),ﬁg(x, o(r)) € Zforall xin o(L;)
<= forevery rin o"l(L’g),,B] (o' (x),r) € Z forall xin (L)
< forevery rin J'I(Lg),ﬁl(x’, r) € Z for all x" in L,

—= ot (L) e L,

This implies that o' (L%) is a Q-submodule of L (since L} is commutative and o' (L)
is an additive subgroup of Lf) and hence that rk(L,) < rk(L,). On the other hand, since
o: L ®Q — L, ®Q is an isometry and hence injective by definition, we also have
that rk(L,) < rk(L,). If follows that rk(L,) = rk(L,), which is equivalent to the fact
that o : L1 ® Q — L, ® Q is an isomorphism of Q-modules. Conversely, suppose
that L, = (L;,f1) and L, = (Lp,f3>) satisty rk(L,) = rk(L,). Then every isometry o
of L, into L, is necessarily surjective as a map between L; ® Q and L, ® Q (since it
is an injective linear map between Q-modules of the same dimension). It follows that
o Li®Q — L,®Q is an isomorphism of Q-modules and therefore it is invertible on L.
Hence, every isometry o of L, into L, is invertible on L# if and only if tk(L,) = rk(J
if and only if L L,® As a consequence, the fol]owm0 holds:
( 4 I®Q — Q\E)'H- d“-d 5%?479-1’ f‘-f/ JM
Tueorem 4.3. Let L, = (L,p1) and L, = (L,,5,) be two positive-definite, even
lattices over Z, such it L@ @G—Er® Quas-modules-over-Q~gnd there exists an
isometry o of L, into Ls—Then U(c) maps Jy.r, to Jy 1, . Furthermore, if ¢ in Ji 1, has a
Fourier expansion of the type

b= ), cylnre(nt +Bara ),
nezZ,relf

n>fa(r2)

then U(o)¢ has the following Fourier expansion:

U@ = ) ey alr)enT +Bilr, 1)

eZ,r eL?
Mw Tkl emthe
U = ; v
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Proor. Lemma 4.2 implies that U(o)¢ transforms like a Jacobi form of weight k
and index L. In light of the discussion above regarding Fourier expansions, we have

U(o)g(t, 1)

D, cnr)e(nt +Ba(ra, o(@)
neZ,rell
nzfara)

cy(n, o(ry))e(nt + B1(r1,21))

neZreo (L})
HZﬂ[ (ry)

= Z cy(n, o(ry))e(nt + B(r1, 1)),
neZ.rielf

n=py(r1).o(r)eLy

as claimed. W/ M s (Va/;, m]

COROLLARY/4 4. Let L, = (Li,ﬁl) (md L, = (Lo,ﬁv) be two positive-definite, even
lattices over Z, such thatdtr&8 - G Fthere exists an isometry
o of L, into L,. Then Ulc Uo) nmps Sm to S,; L

©

Proor. If ¢ in S, and has a Fourier expansion of the type

brm)= D con et +Ba(ra, ),
nEZ.rgELg

n>fa(r2)

then the above theorem implies that U(o")¢ has the following Fourier expansion:

U@ = ), cona(r)ern +Bi(r,z).
HEZJ“|ELf

o(r )GL’E’,HZﬁ'l (r)

If n = B,(ry) in the above equation, then n = B,(c(ry)) and hence cy(n, o(r1)) = 0, since
¢ is a cusp form. It follows that U(o )¢ is also a cusp form. O

We will show that the U(-) operators preserve Eisenstein series in the following
sections.

RemARrk 4.5. In Section 3.3, we encountered an example of an isometry of D, into
Eg which is not surjective, but preserves Jacobi forms nonetheless:

DJI'_)ES (X],...,.x")}’—)(0,...,0,X1,...,x”).

This is due to the fact that, for every ¢ in J; g, we have

Ula)$(t,2) = a;d(1,2) = . an@) = D cplm,re (n7 + (1, 2u(2))

neZ,reky,

“>lrr1

and note that

(!’, CY”(Z)) = (CI” ((r8—r:+l& =l sty rB)) ) CY,,(Z)) = ((rs—r1+1 yeey }’g), Z)
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and (rg_ns1y...,7g) € D:: for every r = (ry,...,r3) in Eg (see Example 1.6). It follows
that
Uedw= D ). D, cnr)emr+ ({5 w1 7850)
(racnitsos rg)eDf (r1,...rs—n) nez
B-n+l 8 1 (e rﬁ)EEs nzr]-o : rr§
=5 Y > e+ (s 75),2)
(Fg-ni 1ot )EDE NEZ (F1yeesls=n )1 -
nzm (rl‘....r,‘)ef:"g,nziéﬂ
= Z Cuays(n, S)e(nt + (s, 2)),
nEZ_sEDﬁ
nz
where
("U((r,,]gb(ns S) = Z Cnﬁ (n,(S[,. vy Sy Xy e ..,./'Cg_”)).
(X1 500000 X§-n)
(«Vl-o_»‘n-"n qu L Xg-n)EEy
”_J'T+"'+!” e rrg_]

The operators U(-) raise the level of the index of the Jacobi form that they are

applied to [ S5 Chnrt VOR
LE M6 IfL, = (L1,B)) and L, = (L, B2) are two positive-definite, even lattices

over Z such that Wmmﬁdes—weﬂ@ and o is an isometry of L, into L,,
then lev(L,) | lev(L,)).

Proor. By definition,
lev(L,) =min{N € N : NBy(r) € Z for all r in Lf}
=min{N € N : NB,(c""(r)) € Z for all rin L}}.
On the other hand, 1ev(£l)ﬂ1(o-“(r)) € Z for all r in Lg. Hence, lev(L,) | lev(L,). m}

ExawmpLE 4.7. The operator U, defined in [14] arises from the following isometry of
the lattice (Z, (x,y) = ml*xy) into the lattice (Z, (x, y) — mxy):

oy (Q, (x,y) = mlPxy) = (Q,(x,y) > mxy), o(x)=Ix.
It raises the level by a factor of /2.

Fix any two bases for L; ® Q and L, ® Q, let G, and G, denote the Gram matrices
of L, and L,, respectively, and let M denote the matrix of o~ with respect to these bases.
Then

Broo =4 & MGM=G = det(L,) = det(L,) det(M)".

In other words, we have shown the following:

Lemva 4.8. If L, = (Ly,5,) and L, = (L, 32) are two positive-definite, even lattices
over Z and o is an isometry of L, into L,, then det(L,) = det(o)? det(L,).

We remind the reader that lev(L) and det(L) have the same set of prime divisors for
every fixed positive-definite, even lattice L. It follows from this fact and from Lemmas
4.6 and 4.8 that, when L, ® Q = L, ® Q, the set of prime divisors of & = V(L 3

prime divisors of det(c) which are not divisors of lev(L,), plus possibly some primes
dividing lev(L,). Write

consmts of the

lev(L,) | 6 det(L,) | 16\,(111)«(;.),



APPENDIX A

Tables of Hecke eigenvalues

This chapter contains the tables used in Section 3.3. The code which generates them
is available at https://github.com/am-github/eigenvalues-Dn. The difficulty
of computing the Hecke eigenvalues decreases as the rank of the lattice increases, since
the Fourier coefficients of Jacobi forms of index D, (n = 1,3,5 and 7) are linear func-
tions of representation numbers of quadratic forms in 8 — n variables. It also increases

with the weight for fixed n. ?J
L. U
Cry(D, 1) \5'4 ol J’é/ Ct{'/ {j)/ )

We remind the reader that
Cy(D,r) \

for every Hecke eigenform ¢ in J; ; and every pair (D, r) in supp(L).* The eigenvalues of
Jacobi forms of weights 4, 6, 8, 10 and 12 and index D, were computed for odd positive
integers / using the pair (-1, (0, ...,0)) in the support of D,. The eigenvalues of Jacobi
forms of weights 12 —n, 16 —n, 18 — n,20 — n and 22 — n and index D, were computed
for odd positive integers / using the pair (-—ﬂg—‘, (%, o %)) in the support of D,, unless
(I,n — 1) > 1. In the latter case, we replaced —% with —%, where m is the smallest
positive integer in the congruence class of n — 1 modulo 8 which is coprime to [.

Ay(l) =

TaLe A.1. Hecke eigenvalues of Jacobi forms of weights 4,6, 8 and 10

and index D,

[ /1!-74_,)1 (l) /IF.M)] ([) /ll,[lg ([) "ldfm(l)

1 1 1 1 1

3 244 19684 -1836 -4284

5 3126 1953126 3990 -1025850

7 16808 40353608 -433432 3225992

9 59293 387440173 1776573 -110787507
11| 161052 | 2357947692 1619772 -753618228
13| 371294 10604499374 -10878466 2541064526
15 || 762744 | 38445332184 -7325640 4394741400
17 | 1419858 | 118587876498 60569298 -5429742318
19 || 2476100 | 322687697780 | -243131740 1487499860
21 || 4101152 | 794320419872 | 795781152 | -13820149728
23 || 6436344 | 1801152661464 | -606096456 | -317091823464
25 1| 9768751 | 3814699218751 | -1204783025 | 289428769375
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A. TABLES OF HECKE EIGENVALUES

TaBLE A.2. Hecke eigenvalues of Jacobi forms of weights 11 and 12 and
index D,

Ailfn (l)

/l'ﬁ]z(l)

Aoy, (D)

25

1
-53028
-5556930
-44496424
1649707317
6320674932
-33124973098
294672884040
-722355252174
-1312620671860
2359556371872
3379752742152
11805984696775

1
71604
-28693770
-853202392
-5333220387
86731179612
-895323442786
-2054588707080
3257566804818
23032467644420
-61092704076768
146495714575224
346495278609775

1
-128844
21640950
-768078808
6140423133
-94724929188
-80621789794
-2788306561800
3052282930002
-7920788351740
98962345937952
-73845437470344
-850644 1300625

TaBLE A.3. Hecke eigenvalues of Jacobi forms of weights 15 and 17 and
index D,

/I%bls(l)

/L»’In(!)

l

1 1

3 -1016388

5 -3341197410

7 -51021361384

9 -6592552918443

11 -177413845094508
-264386643393418
3395952953155080
76811888571465906

-147764402234885140

19

-270053634881821882
-858356053422255000
-16275482960925966606
109087314160337984540

1
-19984212
42951708750
-16835358997576
-218304667023003
-7207832704992348

TaBLE A.4. Hecke eigenvalues of Jacobi forms of weights 19 and 21 and
index D,

Aw,‘,(f)

/{#’!21 (l)

1
159933852
-2838742578690
-782281866962344
-24452708083441803
738502081164310452
12249951000076215062
-4540110354463048 13880
-5840692944055083371214
-10098306774778877636020

-1323691058888421756442
11933677880707341609000
-496480799590583480551566
-11499782498758130928946180

1
-735458292
-16226178983250
16050065775887864
-3511656253747419003
-16742974763001963 1548




