Distinguishing Hecke eigenforms and irreducibility of Hecke polynomials

Alex Ghitza

The University of Melbourne

joint with Sam Chow (University of Bristol) and James Withers (Boston University)

Explicit Theory of Automorphic Forms Monday 24 March 2014

The questions

Question (A)

Suppose f and g are newforms. (How much) can we improve Sturm's bound?

Question (B)

Can Maeda's conjecture be generalized to higher levels?

The questions

Question (A)

Suppose f and g are newforms. (How much) can we improve Sturm's bound?

Question (B)

Can Maeda's conjecture be generalized to higher levels?

How large is *sufficiently large*?

N	K for distinguishability	K for Maeda		
7	6	2		
$2 \cdot 5$	10	2		
11	4	2		
13	4	2		
$2 \cdot 7$	8	2		
2 · 3 · 5	14	2		
$3 \cdot 11$	4	14		
41	2	22		

Some non-squarefree data for distinguishability

N	K	n_0	
2^{3}	8	3	
3^2	8	2	
$2^2 \cdot 3$	20	5	
2^4	6	3	
$2\cdot 3^2$	10	5	
$2^2 \cdot 5$	8	3	
5 ²	4	2	

Some puzzling data for $n_0(N, k)$

N	2	6	8	10	12	14	16	18
7^{2}	0	3	3	3	3	3	3	3
$2 \cdot 7^2$	3	3	3	3	3	3	3	3
$2^2\cdot 3^3$	0	7	7	5	7	5	5	7
$3 \cdot 7^2$	3	5	3	3	3	3		
$3^2 \cdot 5^2$	7	7	7	7	7	7		