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1 Introduction and Main Results
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♦ Shifted Convolution Sum
• Suppose that λ1(n) and λ2(n) are two (multi-

plicative) arithmetic functions, and b ≥ 0 is an
integer.

• It is a classical and important problem in analytic
number theory to study the shifted convolution
sum ∑

n≤x
λ1(n)λ2(n + b).

•Difficulty: The shift parameter b destroys the
multiplicativity.

• There are a large number of papers in this direc-
tion, which have many important applications.

http://www.amss.ac.cn
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♦ Binary Additive Divisor Problem

•When λ1(n) = λ2(n) = τ (n), the Dirichlet divi-
sor function, this problem is the so-called binary
additive divisor problem D(x; b).

– Ingham [1927]:

D(x; b) ∼ (1 + o(1))cσ−1(b)x(log x)2.

– Esterman [1930]: Improved this to an asymp-
totic expansion by observing a relation be-
tween D(x; b) and the Kloosterman sum.

– Atkinson [1941]: Found the importance of u-
niformity with respect to the shift parameter b
and a relation between the error term inD(x; b)
and the power mean of ζ(1/2 + it).

http://www.amss.ac.cn
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♦ Binary Additive Divisor Problem
• – Heath-Brown [1978]: Weil’s bound led to a

better uniform result on D(x; b), and then an
asymptotic formula for the fourth power mean
of ζ(1/2 + it) with error term O(T

7
8+ε).

– Deshouillers and Iwaniec [1982]: The appear-
ance of Kuznetsov’s trace formula changed the
situation dramatically by transforming sum-
s of Kloosterman sums into bilinear forms of
Fourier coefficients of cusp forms.

– Further developments: Jutila [1993], Mo-
tohashi [1994], Duke, Friedlander, Iwaniec
[1994], Ivić and Motohashi [1995], Meurman
[2001]· · · · · ·

http://www.amss.ac.cn
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♦ Its Analog for Fourier Coefficients
•When λ1(n) = λ2(n) = λf (n), Fourier coeffi-

cient of holomorphic or Maass cusp form f , it is
an analog for Fourier coefficients of cusp forms
of the additive divisor problem.

• Since Selberg’s seminal paper [1965], this sum
has been investigated extensively. See e.g. Good
[1982], Jutila [1996, 1997], Sarnak [1994], Liu
and Ye [2002], Harcos [2003], Lau, Liu and Ye
[2006], Blomer and Harcos [2008], Holowinsky
[2010], · · · · · ·
•Non-trivial bound of this sum often has deep im-

plications: e.g. subconvexity and equidistribu-
tion (QUE).

http://www.amss.ac.cn
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♦Mixed Shifted Convolution Sum
• Let

r`(n) :=
∣∣{(n1, . . . , n`) ∈ Z` : n2

1+· · ·+n2
` = n

}∣∣.
• For each holomorphic cusp form f of weight k

and level N , we write its Fourier expansion at
∞:

f (z) =
∑
n≥1

λf (n)n(k−1)/2e(nz),

• Recently Luo considered the shifted convolution
sum of cusp forms with theta series∑

n≤x
λf (n + b)r`(n) := Sf,b,`(x).

http://www.amss.ac.cn
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• Luo [2011]: For ` ≥ 2, k ≥ `/2 + 3 and ε > 0,
we have

Sf,b,`(x)� x`/2−ϑ`+ε, (1)

where ϑ` := (`−1)/(4g+4) and g is the smallest
integer such that g ≥ (` + 1)/2 and the implied
constant depends on f , b, ` and ε.

• In particular

ϑ2 = 1
12, ϑ3 = 1

6, ϑ4 = 3
16,

ϑ5 = 1
4, ϑ6 = 1

4, ϑ` = `−1
2`+6 <

1
2(` ≥ 7).

http://www.amss.ac.cn
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• Luo’s idea is try to generalize the classical
Voronoi formula for r`(n), and then combined
this formula with upper bound for the Salié sum
to derive result (1).

• Based on a series of work on ”the divisor prob-
lems related to the Epstein zeta-function”:
Guangshi Lü, Jie Wu and Wenguang Zhai
[Bull. London Math. Soc. 2010; JNT 2011; Ac-
ta Arith. 2012; Quart. J. Math. 2012],
we try to explore the regularity of r`(n) by the
circle method in analytic number theory and
Siegel’s mass formula.

http://www.amss.ac.cn


Introduction
Proof I
Proof II
Proof III
Proof IV

Home Page

Title Page

JJ II

J I

Page 11 of 40

Go Back

Full Screen

Close

Quit

• Thanking to these classic tools of analytic num-
ber theory, we can show that the influence of
r`(n) to the bound∑

n≤x
λf (n)�f x

1/3(log x)2/(
√
πΓ(5/2))−1

is rather little.

http://www.amss.ac.cn
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•G.S. Lü, J. Wu and W.G. Zhai [2013]

Theorem 1. Let f be a cusp form of weight k
and level N and let ` ≥ 2 be an integer. For any
ε > 0, we have

Sf,b,`(x)�f,`,ε x
`/2−ϑ`+ε (2)

uniformly for x ≥ 2 and 0 ≤ b ≤ x, where

ϑ3 = 1
4, ϑ4 = 1

2, ϑ5 = 1
2, ϑ` = 2

3(` ≥ 6).

In addition, if we assume N = 1, then (2) holds
for ` = 2 with ϑ2 = 1

6.

http://www.amss.ac.cn
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For comparison, we have

Our Result Luo’s Result

• ϑ2 = 1
6, (N = 1)

• ϑ3 = 1
4

• ϑ4 = 1
2

• ϑ5 = 1
2

• ϑ6 = 2
3

• ϑ` = 2
3

` ≥ 7

• ϑ2 = 1
12

• ϑ3 = 1
6

• ϑ4 = 3
16

• ϑ5 = 1
4

• ϑ6 = 1
4

• ϑ` < 1
2

` ≥ 7
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Our result improves Luo’s result above in three di-
rections:

• Enlarge the exponent ϑ`;

• Relax the restricted condition k ≥ `/2 + 3;

• Remove the dependence of b.

•More general. r`(n)-aspect: Let Q(y) be a pos-
itive definite quadratic form Q(y) = 1

2y
tAy. For

each n ≥ 1, define

r(n,Q) :=
∣∣{y ∈ Z` : Q(y) = n

}∣∣.
Similar to Sf,b,`(x), we define

Sf,b,Q(x) :=
∑
n≤x

λf (n + b)r(n,Q).

http://www.amss.ac.cn
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•More general. f -aspect: Define F to be a class
of cusp forms f (z), which consists of holomor-
phic cusp forms with respect to any finite volume
discrete subgroup (such that∞ is a singular cus-
p of width 1), any positive real weight and any
multiplier systems, as well as Maass cusp forms
of any weight and any level.

• Then our result implies for any f ∈ F and any
general Q(y) that

Sf,b,Q(x)�f,Q,ε x
`/2−1/2+ε

holds uniformly for 1 ≤ b ≤ x, provided ` ≥ 5.

http://www.amss.ac.cn
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•A natural question is what should be the best
bound for Sf,b,`(x).

•Conjecture. Let f be a cusp form of weight k
and levelN . Let b ≥ 0 and ` ≥ 3 be two integers.
For any ε > 0, we have

Sf,b,`(x)�f,b,`,ε x
`/2−3/4+ε

for x→∞.

• It seems rather difficult to establish this conjec-
ture. However we can prove that the conjectured
bound is true on average for ` ≥ 5.

http://www.amss.ac.cn
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Theorem 2. If ` ≥ 6, then we have∫ X

1
|Sf,b,Q(x)|2dx =

Cf,b,Q
`− 1/2

X`−1/2

+ Of,Q
(
bX`−3/2 + X`−7/12(logX)1/2).

Furthermore, we have∫ X

1
|Sf,b,5(x)|2dx�f,ε X

`−1/2+ε.

http://www.amss.ac.cn
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2 Proof of Theorem 1: Case ` ≥ 3
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•Aim: By a rather simple proof, to show that
ϑ3 = 1

4 and ϑ` = 1
2 for ` ≥ 4.

• Let
F (α) :=

∑
n≤x

λf (n + b)e(−αn)

and
S(α) :=

∑
|m|≤x1/2

e(αm2).

• Then it is easy to see

Sf,b,`(x) =

∫ 1

0
F (α)S(α)`dα.

http://www.amss.ac.cn
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• Square Root Cancellation: Let f be a cusp for-
m of weight k and level N . The estimate∑

n≤x
λf (n)e(αn)�f x

1/2 log x

holds uniformly for α ∈ R.

• In addition, it is not hard to show∫ 1

0
|S(α)|2dα =

∑
|m|≤x1/2

∑
|n|≤x1/2

m2=n2

1� x1/2,

∫ 1

0
|S(α)|2ddα ≤

∑
n≤dx

rd(n)2� xd−1.

http://www.amss.ac.cn
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• Thus we can show

Sf,b,3(x)

� x1/2(log x)
( ∫ 1

0
|S(α)|2dα

∫ 1

0
|S(α)|4dα

)1
2

� x3/2−1/4 log x.

• For ` ≥ 4

Sf,b,`(x)

� x
1
2(log x)

( ∫ 1

0
|S(α)|4dα

∫ 1

0
|S(α)|2(`−2)dα

)1
2

� x`/2−1/2 log x,

namely we can take ϑ3 = 1
4 and ϑ` = 1

2 for ` ≥ 4.

http://www.amss.ac.cn
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3 Proof of Theorem 1: Case ` ≥ 6
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Aim: When ` ≥ 6, further improve the exponent
ϑ` = 1

2.
Lemma 1. (Approximate Voronoi Formula) Let f
be a cusp form of weight k and level N , (h, q) = 1

A(x, h/q) :=
∑′

n≤x
λf (n)eq(hn).

Then for any ε > 0 we have

A(x, h/q)

=
q1/2x1/4
√

2π

∑
n≤M

λf (n)

n3/4
eq(−hn) cos

(
4π
√
nx

q
− π

4

)

+Of,ε

(
qx1/2+ε

M1/2

)
uniformly for 1 ≤ q ≤ x and 1 ≤M � x.

http://www.amss.ac.cn
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Lemma 2. Let ` ≥ 2, y := (y1, . . . , y`) ∈ Z` and
A = (aij) be an integral matrix such that aii ≡
0 (mod2) for 1 ≤ i ≤ `. The positive definite
quadratic form Q(y) is defined by Q(y) = 1

2y
tAy.

For each n ≥ 1, define

r(n,Q) :=
∣∣{y ∈ Z` : Q(y) = n

}∣∣.
Then for ` ≥ 4 we have

r(n,Q)

= σQn
`
2−1

∞∑
q=1

q∑∗

h=1

S
(hQ
q

)e(−hnq )

q`
+ O

(
n
`
4−δ`+ε

)
,

http://www.amss.ac.cn
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where

S(Q) :=
∑

0≤y1,...,y`≤q−1

e(Q(y)),

σQ :=
(2π)`/2

Γ(`/2)
√
|A|

,

δ` :=

{
1
4 if ` is odd,
1
2 if ` is even,

and
∑∗ means the sum is over 1 ≤ h ≤ q with

(h, q) = 1. Furthermore we have

S(hQ/q)� q`/2 ((h, q) = 1).

http://www.amss.ac.cn
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Proof of Case ` ≥ 6. One can easily deduce that

Sf,b,`(x) (+Lemma 2)

�
∑
q≥1

1

q
`
2

∑
1≤h≤q
(h,q)=1

∣∣∣∣ x+b∑
n=1+b

n
`
2−1λf (n)eq(−hn)

∣∣∣∣
+x`/4−δ`+1+ε (+Lemma 1)

�f,ε x
`/2−2/3+ε

∑
q≥1

1

q`/2−5/3
+ x`/4−δ`+1+ε

�f,ε x
`/2−2/3+ε (recall ` ≥ 6).

http://www.amss.ac.cn
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4 Proof of Theorem 1: Case ` = 2
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In order to deal with case ` = 2, we need the fol-
lowing result.
Lemma 3. Let f be a cusp form of weight k and
level 1. Then the estimate

Sf (x; a, q) :=
∑
n≤x

n≡a(mod q)

λf (n)�f x
1/3+ε

holds uniformly for x ≥ 1 and q ≥ a ≥ 1.

Remark. Note that previous similar results proved
by R.A. Smith needs a restricted condition (a, q) =
1.

http://www.amss.ac.cn
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Here we are able to relax this restricted condition
(a, q) = 1 by proving an auxiliary lemma.

Lemma 4. Let m ≥ 2 be a positive integer. There
is an arithmetic function hm(n) such that

hm(n) = 0 if ∃ p such that p | n and p - m,
|hm(n)| ≤ τ (m)τ4(n) if n | m∞,
λf (mn) =

∑
d|n

hm(d)λf (n/d),

where τk(n) denotes the number of solutions of
n = n1 · · ·nk with positive numbers n1, . . . , nk,
and τ (n) := τ2(n).

http://www.amss.ac.cn
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Proof of Case ` = 2.
By the classical expression

r2(n) = 4
∑
d|n

χ(d)

where χ(n) is the non trivial Dirichlet character
modulo 4, we can write

Sf,b,2(x) = 4S1 + 4S2 − 4S3,

http://www.amss.ac.cn
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where

S1 :=
∑
d≤
√
x

∑
dm≤x

χ(d)λf (dm + b),

S2 :=
∑

m≤
√
x

∑
dm≤x

χ(d)λf (dm + b),

S3 :=
∑
d≤
√
x

∑
m≤
√
x

χ(d)λf (dm + b).
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By Lemma 3, we have (uniformly for 0 ≤ b ≤ x)

S1 =
∑
d≤
√
x

χ(d)
∑

n≤x+b
n≡b(mod d)

λf (n)

�
∑
d≤
√
x

(x + b)1/3+ε� x5/6+ε.

S3 =
∑
d≤
√
x

χ(d)
∑

n≤d
√
x+b

n≡b(mod d)

λf (n)

�
∑
d≤
√
x

(d
√
x + b)1/3+ε� x5/6+ε.
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Note that

χ(d) = 1 if d ≡ 1 (mod 4),

χ(d) = −1 if d ≡ 3 (mod 4),

χ(d) = 0 if 2 | d,

S2 =
∑

m≤
√
x

∑
(4d+1)m≤x

λf ((4d + 1)m + b)

−
∑

m≤
√
x

∑
(4d+3)m≤x

λf ((4d + 3)m + b)
)
.
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By Lemma 3, we have (uniformly for 0 ≤ b ≤ x)

S2 =
∑

m≤
√
x

∑
n≤x+b

n≡m+b(mod 4m)

λf (n)

−
∑

m≤
√
x

∑
n≤x+b

n≡3m+b(mod 4m)

λf (n)

�
∑

m≤
√
x

(x + b)1/3+ε� x5/6+ε.
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5 About the Proof of Theorem 2
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• It suffices for us to evaluate
∫X√

X
|Sf,b,Q(x)|2dx.

• By Lemma 2 (not exactly), we have

Sf,b,Q(x)

= σQ

∞∑
q=1

q∑∗

h=1

S

(
hQ

q

)
eq(bh)

q`
A`,b(x,−h/q)

+O
(
δQx

`/4−δ`+1+ε).
Here

A`,b(x,−
h

q
) :=

∑
1+b≤n≤x+b

(n−b)
`
2−1λf (n)eq(−hn).
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•When q > X
1
2, the contribution of∑

q>X1/2

1

q`

q∑∗

h=1

∣∣∣∣S(hQq
)
A`,b(x,−h/q)

∣∣∣∣
to Sf,b,Q(x) is negligible.

• Then after some arguments, we have a relatively
simple formula

Sf,b,Q(x) = σQx
`
2−1

∑
q≤X1/2

q∑∗

h=1

S
(hQ
q

)eq(bh)

q`
×

×A(x + b,−h/q) + O(R`(X)).

Here A(x, h/q) :=
∑′

n≤x
λf (n)eq(hn).
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•Now we split the sum over q ≤ X1/2 into two
parts according to q ≤ X1/6 or X1/6 < q ≤
X1/2.

Sf,b,Q(x) = S1(x) + S2(x) + O(R`(X)).

• Evaluate the integral
∫X√

X
|S1(x)|2dx.

After opening up the mean square, evaluating
the diagonal terms, and estimating non-diagonal
terms, eventually we have∫ X

√
X
|S1(x)|2dx = Cf,b,Q

∫ X

1
x`−2(x + b)1/2dx

+O
(
R∗`(X)

)
.
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• Estimate the integral
∫X√

X
|S2(x)|2dx.

•We need one mean value result for A(x, hq ) due
to Jutila∫ X

1
|A(x,

h

q
)|2dx =

1

(4k + 2)π2

∞∑
n=1

|λf (n)|2

n
3
2

qX
3
2

+Of,ε
(
q3/2X

5
4+ε + q2X1+ε).

• This determines that∫ X

√
X
|S2(x)|2dx�

{
X`−2/3L if ` ≥ 6,

X`−1/2+ε if ` = 5.

http://www.amss.ac.cn


Introduction
Proof I
Proof II
Proof III
Proof IV

Home Page

Title Page

JJ II

J I

Page 40 of 40

Go Back

Full Screen

Close

Quit

Thank You!
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