

Introduction

Shifted Convolution of Cusp Forms with θ -Series

Guangshi Lü (吕广世)

School of Mathematics, Shandong University

gslv@sdu.edu.cn

Joint work with Prof. J. Wu (Nancy, France), Prof. W.G. Zhai (Beijing, China).

Home Page Title Page Itle Page Itle Page Itle Page Itle Page Itle Page 2 of 40 Go Back Full Screen Close Quit

Acknowledgements

• I would like to thank the organizers of Conference of Explicit Theory of Automorphic Forms for inviting me to give a lecture.

1 Introduction and Main Results

\diamondsuit Shifted Convolution Sum

- Suppose that $\lambda_1(n)$ and $\lambda_2(n)$ are two (multiplicative) arithmetic functions, and $b \ge 0$ is an integer.
- It is a classical and important problem in analytic number theory to study the shifted convolution sum

$$\sum_{n \le x} \lambda_1(n) \lambda_2(n+b).$$

- Difficulty: The shift parameter *b* destroys the multiplicativity.
- There are a large number of papers in this direction, which have many important applications.

Home Page		
Title	Page	
••		
Page 4 of 40		
Go Back		
Full Screen		
Close		
Quit		

\diamond Binary Additive Divisor Problem

• When $\lambda_1(n) = \lambda_2(n) = \tau(n)$, the Dirichlet divisor function, this problem is the so-called binary additive divisor problem D(x; b).

– Ingham [1927]:

 $D(x;b) \sim (1+o(1))c\sigma_{-1}(b)x(\log x)^2.$

- Esterman [1930]: Improved this to an asymptotic expansion by observing a relation between D(x; b) and the Kloosterman sum.
- Atkinson [1941]: Found the importance of uniformity with respect to the shift parameter band a relation between the error term in D(x; b)and the power mean of $\zeta(1/2 + it)$.

Home	Home Page	
Title	Title Page	
••	44	
	Þ	
Page	Page 5 of 40	
Go Back		
Full Screen		
Close		
Quit		

\diamond Binary Additive Divisor Problem

- - Heath-Brown [1978]: Weil's bound led to a better uniform result on D(x; b), and then an asymptotic formula for the fourth power mean of $\zeta(1/2 + it)$ with error term $O(T^{\frac{7}{8} + \varepsilon})$.
 - Deshouillers and Iwaniec [1982]: The appearance of Kuznetsov's trace formula changed the situation dramatically by transforming sums of Kloosterman sums into bilinear forms of Fourier coefficients of cusp forms.
 - Further developments: Jutila [1993], Motohashi [1994], Duke, Friedlander, Iwaniec [1994], Ivić and Motohashi [1995], Meurman [2001].....

Ноте	Home Page	
Title	Title Page	
••	•• ••	
•	►	
Page 6 of 40		
Go Back		
Full Screen		
Close		
Quit		

\diamondsuit Its Analog for Fourier Coefficients

• When $\lambda_1(n) = \lambda_2(n) = \lambda_f(n)$, Fourier coefficient of holomorphic or Maass cusp form f, it is an analog for Fourier coefficients of cusp forms of the additive divisor problem.

- Since Selberg's seminal paper [1965], this sum has been investigated extensively. See e.g. Good [1982], Jutila [1996, 1997], Sarnak [1994], Liu and Ye [2002], Harcos [2003], Lau, Liu and Ye [2006], Blomer and Harcos [2008], Holowinsky [2010],
- Non-trivial bound of this sum often has deep implications: e.g. subconvexity and equidistribution (QUE).

Home	Home Page	
Title	Title Page	
44	••	
Page	Page 7 of 40	
Go E	Go Back	
Full Screen		
Close		
Quit		

\Diamond Mixed Shifted Convolution Sum

• Let

$$r_{\ell}(n) := \left| \left\{ (n_1, \dots, n_{\ell}) \in \mathbb{Z}^{\ell} : n_1^2 + \dots + n_{\ell}^2 = n \right\} \right|$$

 For each holomorphic cusp form f of weight k and level N, we write its Fourier expansion at ∞:

$$f(z) = \sum_{n \ge 1} \lambda_f(n) n^{(k-1)/2} \mathbf{e}(nz),$$

• Recently Luo considered the shifted convolution sum of cusp forms with theta series

$$\sum_{n\leq x}\lambda_f(n+b)r_\ell(n):=\mathscr{S}_{f,b,\ell}(x).$$

Home Page		
Title	Page	
•• ••		
•		
Page 8 of 40		
Go Back		
Full Screen		
Close		
Quit		

Introduction Proof I Proof II Proof III

• Luo [2011]: For $\ell \ge 2$, $k \ge \ell/2 + 3$ and $\varepsilon > 0$, we have

$$\mathscr{S}_{f,b,\ell}(x) \ll x^{\ell/2 - \vartheta_{\ell} + \varepsilon}, \tag{1}$$

where $\vartheta_{\ell} := (\ell - 1)/(4g + 4)$ and g is the smallest integer such that $g \ge (\ell + 1)/2$ and the implied constant depends on f, b, ℓ and ε .

• In particular

$$\vartheta_2 = \frac{1}{12}, \quad \vartheta_3 = \frac{1}{6}, \quad \vartheta_4 = \frac{3}{16},$$

 $\vartheta_5 = \frac{1}{4}, \quad \vartheta_6 = \frac{1}{4}, \quad \vartheta_\ell = \frac{\ell - 1}{2\ell + 6} < \frac{1}{2}(\ell \ge 7).$

Proof IV
Home Page
Title Page
H
Page 9 of 40
Go Back
Full Screen

Close

Quit

- Luo's idea is try to generalize the classical Voronoi formula for $r_{\ell}(n)$, and then combined this formula with upper bound for the Salié sum to derive result (1).
- Based on a series of work on "the divisor problems related to the Epstein zeta-function": Guangshi Lü, Jie Wu and Wenguang Zhai
 [Bull. London Math. Soc. 2010; JNT 2011; Acta Arith. 2012; Quart. J. Math. 2012], we try to explore the regularity of rℓ(n) by the circle method in analytic number theory and Siegel's mass formula.

Home	Home Page	
Title	Title Page	
••	••	
	►	
Page 1	Page 10 of 40	
Go Back		
Full Screen		
Close		

• Thanking to these classic tools of analytic number theory, we can show that the influence of $r_\ell(n)$ to the bound

$$\sum_{n \le x} \lambda_f(n) \ll_f x^{1/3} (\log x)^{2/(\sqrt{\pi}\Gamma(5/2)) - 1}$$

is rather little.

• G.S. Lü, J. Wu and W.G. Zhai [2013]

Theorem 1. Let f be a cusp form of weight kand level N and let $\ell \ge 2$ be an integer. For any $\varepsilon > 0$, we have

$$\mathscr{S}_{f,b,\ell}(x) \ll_{f,\ell,\varepsilon} x^{\ell/2 - \vartheta_{\ell} + \varepsilon}$$
 (2)

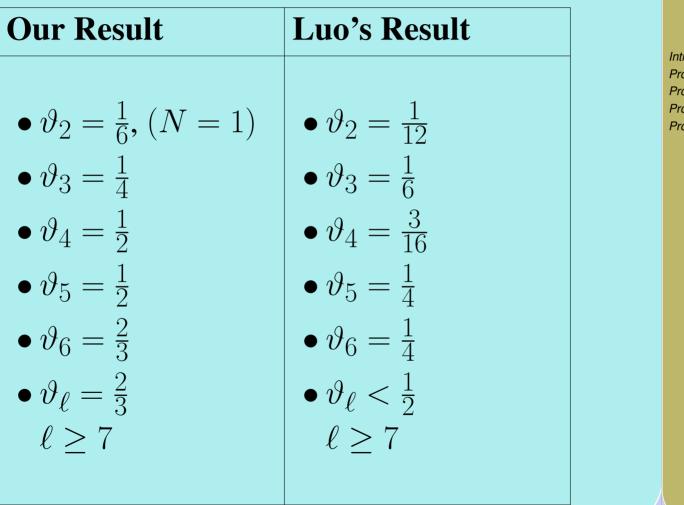
uniformly for $x \ge 2$ and $0 \le b \le x$, where

$$\vartheta_3 = \frac{1}{4}, \quad \vartheta_4 = \frac{1}{2}, \quad \vartheta_5 = \frac{1}{2}, \quad \vartheta_\ell = \frac{2}{3}(\ell \ge 6).$$

In addition, if we assume N = 1, then (2) holds for $\ell = 2$ with $\vartheta_2 = \frac{1}{6}$.

Home	Home Page	
Title F	Page	
••	••	
	•	
Page 12	2 of 4 0	
Go Back		
Full Screen		
Close		
Quit		

For comparison, we have



Introduction Proof I Proof II Proof III Proof IV

Ноте	Home Page	
Title	Page	
44	••	
•		
Page 13 of 40		
Go Back		
Full Screen		
Close		

Quit

Our result improves Luo's result above in three directions:

- Enlarge the exponent ϑ_{ℓ} ;
- Relax the restricted condition $k \ge \ell/2 + 3$;
- \bullet Remove the dependence of b.
- More general. r_ℓ(n)-aspect: Let Q(y) be a positive definite quadratic form Q(y) = ¹/₂y^tAy. For each n ≥ 1, define

$$r(n,Q) := \left| \left\{ \mathbf{y} \in \mathbb{Z}^{\ell} : Q(\mathbf{y}) = n \right\} \right|.$$

Similar to $\mathscr{S}_{f,b,\ell}(x)$, we define

$$\mathscr{S}_{f,b,Q}(x) := \sum_{n \leq x} \lambda_f(n+b) r(n,Q).$$

Home Page		
Title	Page	
••	••	
•	►	
Page 14 of 40		
Go Back		
Full Screen		
Close		
Quit		

- More general. *f*-aspect: Define *F* to be a class of cusp forms *f*(*z*), which consists of holomorphic cusp forms with respect to any finite volume discrete subgroup (such that ∞ is a singular cusp of width 1), any positive real weight and any multiplier systems, as well as Maass cusp forms of any weight and any level.
- \bullet Then our result implies for any $f\in \mathcal{F}$ and any general $Q(\mathbf{y})$ that

$$\mathscr{S}_{f,b,Q}(x) \ll_{f,Q,\varepsilon} x^{\ell/2 - 1/2 + \varepsilon}$$

holds uniformly for $1 \le b \le x$, provided $\ell \ge 5$.

nt k Proof I

- A natural question is what should be the best bound for $\mathscr{S}_{f,b,\ell}(x)$.
- Conjecture. Let f be a cusp form of weight k and level N. Let b ≥ 0 and l ≥ 3 be two integers. For any ε > 0, we have

$$\mathscr{S}_{f,b,\ell}(x) \ll_{f,b,\ell,\varepsilon} x^{\ell/2 - 3/4 + \varepsilon}$$

for $x \to \infty$.

It seems rather difficult to establish this conjecture. However we can prove that the conjectured bound is true on average for ℓ ≥ 5.

Theorem 2. If $\ell \ge 6$, then we have

$$\begin{split} &\int_{1}^{X} |\mathscr{S}_{f,b,Q}(x)|^{2} \mathrm{d}x = \frac{C_{f,b,Q}}{\ell - 1/2} X^{\ell - 1/2} \\ &+ O_{f,Q} \left(b X^{\ell - 3/2} + X^{\ell - 7/12} (\log X)^{1/2} \right). \end{split}$$

Furthermore, we have

$$\int_1^X |\mathscr{S}_{f,b,5}(x)|^2 \mathrm{d} x \ll_{f,\varepsilon} X^{\ell-1/2+\varepsilon}.$$

Ноте	Home Page	
Title	Title Page	
••	••	
Page 1	Page 17 of 40	
Go Back		
Full Screen		
Close		
Quit		

2 Proof of Theorem 1: Case $\ell \geq 3$

Home Page	
Title Page	
••	
Page 18 of 40	
Go Back	
Full Screen	
Close	
Quit	

Home Page			
Title	Title Page		
••	•• ••		
•			
Page 19 of 40			
Go Back			
Full Screen			
Close			
Quit			

• Aim: By a rather simple proof, to show that $\vartheta_3 = \frac{1}{4}$ and $\vartheta_\ell = \frac{1}{2}$ for $\ell \ge 4$.

• Let

$$F(\alpha) := \sum_{n \leq x} \lambda_f(n+b) \mathrm{e}(-\alpha n)$$

and

$$S(\alpha) := \sum_{|m| \le x^{1/2}} e(\alpha m^2).$$

• Then it is easy to see

$$\mathscr{S}_{f,b,\ell}(x) = \int_0^1 F(\alpha) S(\alpha)^\ell \mathrm{d}\alpha.$$

• Square Root Cancellation: Let f be a cusp form of weight k and level N. The estimate

$$\sum_{n \le x} \lambda_f(n) \mathbf{e}(\alpha n) \ll_f x^{1/2} \log x$$

holds uniformly for $\alpha \in \mathbb{R}$.

_ 1

• In addition, it is not hard to show

$$\int_0^1 |S(\alpha)|^2 d\alpha = \sum_{\substack{|m| \le x^{1/2} \ |n| \le x^{1/2} \\ m^2 = n^2}} \sum_{\substack{m^2 = n^2}} 1 \ll x^{1/2},$$

$$\int_0^1 |S(\alpha)|^{2d} \mathrm{d}\alpha \leq \sum_{n \leq dx} r_d(n)^2 \ll x^{d-1}.$$

Home	Home Page	
Title	Title Page	
••	••	
	►	
Page 20 of 40		
Go Back		
Full Screen		
Close		
Quit		

• Thus we can show

$$\begin{aligned} \mathscr{S}_{f,b,3}(x) \\ \ll x^{1/2} (\log x) \Big(\int_0^1 |S(\alpha)|^2 \mathrm{d}\alpha \int_0^1 |S(\alpha)|^4 \mathrm{d}\alpha \Big)^{\frac{1}{2}} \\ \ll x^{3/2 - 1/4} \log x. \end{aligned}$$

• For
$$\ell \ge 4$$

$$\begin{aligned} \mathscr{S}_{f,b,\ell}(x) \\ \ll x^{\frac{1}{2}}(\log x) \Big(\int_{0}^{1} |S(\alpha)|^{4} \mathrm{d}\alpha \int_{0}^{1} |S(\alpha)|^{2(\ell-2)} \mathrm{d}\alpha \Big)^{\frac{1}{2}} \\ \ll x^{\ell/2 - 1/2} \log x, \end{aligned}$$

namely we can take $\vartheta_3 = \frac{1}{4}$ and $\vartheta_\ell = \frac{1}{2}$ for $\ell \ge 4$.

Home Page

Title Page

Page 21 of 40

Go Back

Full Screen

Close

Quit

44

3 Proof of Theorem 1: Case $\ell \ge 6$

Ноте	Home Page	
Title	Page	
••		
Page 2	Page 22 of 40	
GO	Go Back	
Eull C		
Full Screen		
Close		
Ciose		
Quit		

Aim: When $\ell \ge 6$, further improve the exponent $\vartheta_{\ell} = \frac{1}{2}$.

Lemma 1. (Approximate Voronoi Formula) Let f be a cusp form of weight k and level N, (h, q) = 1

$$A(x, h/q) := \sum_{n \le x} \lambda_f(n) e_q(hn).$$

Then for any $\varepsilon > 0$ we have

$$\begin{split} &A(x,h/q) \\ &= \frac{q^{1/2} x^{1/4}}{\sqrt{2}\pi} \sum_{n \leq M} \frac{\lambda_f(n)}{n^{3/4}} e_q(-\overline{h}n) \cos\left(\frac{4\pi\sqrt{nx}}{q} - \frac{\pi}{4}\right) \\ &+ O_{f,\varepsilon} \left(\frac{qx^{1/2+\varepsilon}}{M^{1/2}}\right) \end{split}$$

uniformly for $1 \le q \le x$ and $1 \le M \ll x$.

Home Page

Title Page

Page 23 of 40

Go Back

Full Screen

Close

Quit

••

Lemma 2. Let $\ell \geq 2$, $\mathbf{y} := (y_1, \dots, y_\ell) \in \mathbb{Z}^\ell$ and $\mathbf{A} = (a_{ij})$ be an integral matrix such that $a_{ii} \equiv 0 \pmod{2}$ for $1 \leq i \leq \ell$. The positive definite quadratic form $Q(\mathbf{y})$ is defined by $Q(\mathbf{y}) = \frac{1}{2}\mathbf{y}^{\mathrm{t}}\mathbf{A}\mathbf{y}$. For each $n \geq 1$, define

$$r(n,Q) := \left| \left\{ \mathbf{y} \in \mathbb{Z}^{\ell} : Q(\mathbf{y}) = n \right\} \right|.$$

Then for $\ell \ge 4$ we have

$$\begin{split} r(n,Q) \\ &= \sigma_Q n^{\frac{\ell}{2}-1} \sum_{q=1}^{\infty} \sum_{h=1}^{q} S\left(\frac{hQ}{q}\right) \frac{\mathrm{e}(-\frac{hn}{q})}{q^{\ell}} + O\left(n^{\frac{\ell}{4}-\delta_{\ell}+\varepsilon}\right), \end{split}$$

where

$$\begin{split} S(Q) &:= \sum_{0 \leq y_1, \dots, y_\ell \leq q-1} \mathrm{e}(Q(\mathbf{y})), \\ \sigma_Q &:= \frac{(2\pi)^{\ell/2}}{\Gamma(\ell/2)\sqrt{|\mathbf{A}|}}, \\ \delta_\ell &:= \begin{cases} \frac{1}{4} & \text{if } \ell \text{ is odd}, \\ \frac{1}{2} & \text{if } \ell \text{ is even,} \end{cases} \end{split}$$

and \sum^* means the sum is over $1 \le h \le q$ with (h,q) = 1. Furthermore we have

 $S(hQ/q) \ll q^{\ell/2} \quad ((h,q)=1).$

Introduction Proof I Proof II Proof III Proof IV

Home	Home Page	
Title	Title Page	
••		
Page 25 of 40		
Go Back		
Full Screen		
Close		

Quit

Introduction Proof I

Proof II Proof III Proof IV

Proof of Case $\ell \geq 6$. One can easily deduce that

 $\mathscr{S}_{f,b,\ell}(x) \qquad (+\text{Lemma 2})$ $\ll \sum_{q\geq 1} \frac{1}{q^{\frac{\ell}{2}}} \sum_{1\leq h\leq q} \bigg| \sum_{n=1+b}^{x+b} n^{\frac{\ell}{2}-1} \lambda_f(n) \mathbf{e}_q(-hn) \bigg|$ (h,q) = 1 $\ll_{f,\varepsilon} x^{\ell/2-2/3+\varepsilon} \sum_{q \ge 1} \frac{1}{q^{\ell/2-5/3}} + x^{\ell/4-\delta_{\ell}+1+\varepsilon}$ $\ll_{f,\varepsilon} x^{\ell/2-2/3+\varepsilon}$ (recall $\ell \ge 6$).

Quit

4 Proof of Theorem 1: Case $\ell = 2$

In order to deal with case $\ell = 2$, we need the following result.

Lemma 3. Let f be a cusp form of weight k and level 1. Then the estimate

$$S_f(x; a, q) := \sum_{\substack{n \le x \\ n \equiv a \pmod{q}}} \lambda_f(n) \ll_f x^{1/3 + \varepsilon}$$

holds uniformly for $x \ge 1$ and $q \ge a \ge 1$.

Remark. Note that previous similar results proved by R.A. Smith needs a restricted condition (a, q) = 1. Here we are able to relax this restricted condition (a,q) = 1 by proving an auxiliary lemma.

Lemma 4. Let $m \ge 2$ be a positive integer. There is an arithmetic function $h_m(n)$ such that

$$\begin{split} h_m(n) &= 0 \quad \text{if } \exists \ p \text{ such that } p \mid n \text{ and } p \nmid m, \\ |h_m(n)| &\leq \tau(m) \tau_4(n) \quad \text{if } n \mid m^{\infty}, \\ \lambda_f(mn) &= \sum_{d \mid n} h_m(d) \lambda_f(n/d), \end{split}$$

where $\tau_k(n)$ denotes the number of solutions of $n = n_1 \cdots n_k$ with positive numbers n_1, \ldots, n_k , and $\tau(n) := \tau_2(n)$.

Proof of Case $\ell = 2$. By the classical expression

$$r_2(n) = 4 \sum_{d|n} \chi(d)$$

where $\chi(n)$ is the non trivial Dirichlet character modulo 4, we can write

$$\mathscr{S}_{f,b,2}(x) = 4S_1 + 4S_2 - 4S_3,$$

Introduction Proof I Proof II Proof III Proof IV

Page	
Title Page	
••	
►	
Page 30 of 40	
Go Back	
Full Screen	
Close	

Quit

where

$$S_{1} := \sum_{d \leq \sqrt{x}} \sum_{dm \leq x} \chi(d) \lambda_{f}(dm + b),$$

$$S_{2} := \sum_{m \leq \sqrt{x}} \sum_{dm \leq x} \chi(d) \lambda_{f}(dm + b),$$

$$S_{3} := \sum_{d \leq \sqrt{x}} \sum_{m \leq \sqrt{x}} \chi(d) \lambda_{f}(dm + b).$$

By Lemma 3, we have (uniformly for $0 \le b \le x$)

$$S_1 = \sum_{d \le \sqrt{x}} \chi(d) \sum_{\substack{n \le x+b \\ n \equiv b \pmod{d}}} \lambda_f(n)$$
$$\ll \sum_{d \le \sqrt{x}} (x+b)^{1/3+\varepsilon} \ll x^{5/6+\varepsilon}.$$

$$S_3 = \sum_{d \le \sqrt{x}} \chi(d) \sum_{\substack{n \le d\sqrt{x}+b \\ n \equiv b \pmod{d}}} \lambda_f(n)$$
$$\ll \sum_{d \le \sqrt{x}} (d\sqrt{x}+b)^{1/3+\varepsilon} \ll x^{5/6+\varepsilon}$$

Home Page Title Page **4** Page 32 of 40 Go Back Full Screen Close Quit

Note that

$$\begin{split} \chi(d) &= 1 \quad \text{if } d \equiv 1 \pmod{4}, \\ \chi(d) &= -1 \quad \text{if } d \equiv 3 \pmod{4}, \\ \chi(d) &= 0 \quad \text{if } 2 \mid d, \end{split}$$

$$S_2 = \sum_{\substack{m \le \sqrt{x} (4d+1)m \le x}} \lambda_f((4d+1)m+b)$$
$$-\sum_{\substack{m \le \sqrt{x} (4d+3)m \le x}} \lambda_f((4d+3)m+b) \Big)$$

Introduction Proof I Proof II Proof III Proof IV

Ноте	Home Page	
Title	Title Page	
	1 age	
••	>>	
Page 3	Page 33 of 40	
Go	Go Back	
	GUBACK	
Full S	Full Screen	
Close		
Ciose		
0	Quit	

•

By Lemma 3, we have (uniformly for $0 \le b \le x$)

$$S_{2} = \sum_{\substack{m \leq \sqrt{x} \\ n \equiv m + b \pmod{4m}}} \sum_{\substack{n \leq x + b \\ n \equiv m + b \pmod{4m}}} \lambda_{f}(n)$$
$$- \sum_{\substack{m \leq \sqrt{x} \\ n \equiv 3m + b \pmod{4m}}} \sum_{\substack{n \leq x + b \\ n \equiv 3m + b \pmod{4m}}} \lambda_{f}(n)$$
$$\ll \sum_{\substack{m \leq \sqrt{x} \\ m \leq \sqrt{x}}} (x + b)^{1/3 + \varepsilon} \ll x^{5/6 + \varepsilon}.$$

Proof I Proof II Proof III Proof IV Home Page Title Page

4

Page 34 of 40

Go Back

Full Screen

Close

Quit

Introduction

5 About the Proof of Theorem 2

Home Page	
Title Page	
•• ••	
Page 35 of 40	
Go Back	
Full Screen	
Close	
Quit	

It suffices for us to evaluate ∫^X_{√X} |𝒴_{f,b,Q}(x)|²dx.
By Lemma 2 (not exactly), we have

$$\begin{split} \mathscr{S}_{f,b,Q}(x) \\ &= \sigma_Q \sum_{q=1}^{\infty} \sum_{h=1}^{q} S\left(\frac{hQ}{q}\right) \frac{\mathbf{e}_q(bh)}{q^\ell} A_{\ell,b}(x,-h/q) \\ &+ O\left(\delta_Q x^{\ell/4 - \delta_\ell + 1 + \varepsilon}\right). \end{split}$$

Here

$$A_{\ell,b}(x, -\frac{h}{q}) := \sum_{1+b \le n \le x+b} (n-b)^{\frac{\ell}{2}-1} \lambda_f(n) \mathbf{e}_q(-hn) \mathbf{e}_q(-h$$

Introduction Proof I Proof II Proof III Proof IV

Quit

• When $q > X^{\frac{1}{2}}$, the contribution of

$$\sum_{q>X^{1/2}} \frac{1}{q^{\ell}} \sum_{h=1}^{q^*} \left| S\left(\frac{hQ}{q}\right) A_{\ell,b}(x, -h/q) \right|$$

to $\mathscr{S}_{f,b,Q}(x)$ is negligible.

• Then after some arguments, we have a relatively simple formula

$$\mathscr{S}_{f,b,Q}(x) = \sigma_Q x^{\frac{\ell}{2}-1} \sum_{\substack{q \leq X^{1/2} \\ n \leq x}} \sum_{h=1}^{q} S\left(\frac{hQ}{q}\right) \frac{\mathbf{e}_q(bh)}{q^\ell} \times A(x+b,-h/q) + O(R_\ell(X)).$$

Here $A(x,h/q) := \sum_{\substack{n \leq x}} \lambda_f(n) \mathbf{e}_q(hn).$

Ноте	e Page	
Title	Title Page	
••		
Page 3	Page 37 of 40	
Go Back		
Full S	Full Screen	
Close		
Quit		

Home	e Page	
Title	Page	
••	>>	
•		
Page 3	38 of 40	
Go	Go Back	
Full S	Screen	
Close		
Quit		

• Now we split the sum over $q \le X^{1/2}$ into two parts according to $q \le X^{1/6}$ or $X^{1/6} < q \le X^{1/2}$.

$$\mathscr{S}_{f,b,Q}(x) = S_1(x) + S_2(x) + O(R_{\ell}(X)).$$

• Evaluate the integral $\int_{\sqrt{X}}^{X} |S_1(x)|^2 dx$. After opening up the mean square, evaluating the diagonal terms, and estimating non-diagonal terms, eventually we have

$$\begin{split} \int_{\sqrt{X}}^{X} |S_1(x)|^2 \mathrm{d}x &= C_{f,b,Q} \int_{1}^{X} x^{\ell-2} (x+b)^{1/2} \mathrm{d}x \\ &+ O\big(R_{\ell}^*(X)\big). \end{split}$$

- Estimate the integral $\int_{\sqrt{X}}^{X} |S_2(x)|^2 dx$.
- We need one mean value result for $A(x, \frac{h}{q})$ due to Jutila

$$\int_{1}^{X} |A(x, \frac{h}{q})|^{2} dx = \frac{1}{(4k+2)\pi^{2}} \sum_{n=1}^{\infty} \frac{|\lambda_{f}(n)|^{2}}{n^{\frac{3}{2}}} qX^{\frac{3}{2}} + O_{f,\varepsilon} \left(q^{3/2} X^{\frac{5}{4}+\varepsilon} + q^{2} X^{1+\varepsilon}\right)$$

• This determines that

$$\int_{\sqrt{X}}^{X} |S_2(x)|^2 \mathrm{d}x \ll \begin{cases} X^{\ell-2/3}\mathcal{L} & \text{if } \ell \ge 6, \\ X^{\ell-1/2+\varepsilon} & \text{if } \ell = 5. \end{cases}$$

Home Page	
Title Page	
••	
•	►
Page 39 of 40	
Go Back	
Full Screen	
Close	
Quit	

Thank You!

