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1. Connections and application to classical modular forms

We will explain by connections the two well-known derivative operators

df +/—1k
dz vy
for a modular form f of weight 2k, where the first is non-holomorphic modular form of
weight 2k 4+ 2 and the second is holomorphic modular form of weight 2k + 2. First we
recall the definition of a connection.

Dif :=

f and Dyf = Z—]; — V—1kGa(2)f

1.1. Connections in differential geometry

Suppose E is a g-dimensional real vector bundle on a smooth manifold M, and T'(E)
is the set of smooth sections of E on M. Let T*(M) be the cotangent space of M.
A connection on the vector bundle E is a map



D: T(E) — I'(T*(M) ® E),

which satisfies the following conditions

1. Forany s1,s2 € I'(E)

D(s1 + s2) = D(s1) + D(s2).

2. Forany s e I'(F) andany o € C°°(M)

D(as) = da ® aD(s).



If M has a generalized Riemannian metric G = Y, ; g;jdu’du?, where {du'} is a
series of coordinate on M, by the fundamental theorem of Riemannian geometry, M
has a unique torsion-free (i.e. I‘,’fj = I‘;?i) and metric-compatible connection D (i.e.
D(G)=0), called Levi-Civita connection of M. The coefficients I‘fj of the Levi-Civita
connection are given by

1 dg; 9g.; ag; ;
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where g% are elements of the matrix (g*) := (g;;) ~!. We have

D(dzp) = — Z I‘fjdzidzj.
2]



The following result is basic and useful in the application of connections to automorphic
forms.

Let " be a group, (M, G) a Riemannian manifold and D the Levi-Civita connection on
M. If T has a smooth left action on M such that G(o+X,0,Y) = G(X,Y) for all
ocecl,X,Y € T(M),ie. Gisan I'-invariant metric, then

oD = Do (c €T).



1.2. Levi-Civita connection on upper half plane

On the upper half plane H, there is the SLa(R)-invariant metric

o dz®+dy? dz-dz

y? y?
and {dz,dz} is a series of coordinate on H. Thus by fundamental theorem of Rie-
mannian geometry, there is the Levi-Civita connection on H.

ds

, where 2z = x + 1y,

Now we compute the connection coefficients I‘fj of Levi-Civita connection by the for-
mula above. In the upper half plane, we have

dz - dz 0 —12 d
2 . — 2y <
ds® = 2 (dz,dZz) ( 19 ) (d2

N—

2y2



By the formula in last subsection, we can get (notice that % = 0, % = 0)
1 _ v—1 1 _ 1 1 _ ol
I'i1 = g I'51=172=0, Iy, =1I7,=0,
and
V=1

1 2 2 _
I'2=111=0, 15,= T

So we have for the Levi-Civita connection D satisfying

D(dz) = —\/__1dz -dz, D(dz) = \/__le - dz

and for any holomorphic function f on H,

D(f(d2)*) = df (d2)* + f - D(d2)* = (Zf — “?'%f) (dz)**T.



If f is @ modular form of weight 2k, we have f - (dz)¥ is invariant under the action of
SL2(Z). Noticing that for v € SL2(RR), we have

dz
(cz + d)?’

~vD = D~, and as d(vz) =

we see that D(f - (dz)¥) is invariant under SLa(Z).
Then % — —V_ylkf IS a non-holomorphic modular form of weight 2k 4+ 2. We explain
the first differential operator by the connection.



1.3. Modular connections

However, we can't get the second (holomorphic) operator in the way above. The main
reason is that the conclusion vD = D~ for all v € SLa(R) is too strong. To study
derivative of modular forms, we only need vD = D~ for~ € SL2(Z). So we introduce
a weaker notion, modular connection, to get the second operator.

A connection D is determined by the connection coefficients. Put the connection co-
efficients together, we get the connection matrix w, which determine the connection D
completely. v¥D = D~ is equivalent to a transformation formula of w for v € SL2(R)
. We only require w to satisfy the transformation formula for v € SLa(Z). Inversely if
such w is given, then we can get a connection D, which satisfies vID = D~ only for

~v € SLa(Z).



Write dz1 = dz and dzo = dZz. The connection matrix w of a connection D on H is
determined by the equality

(D(dz1), D(dz2)) = —(dz1,dz2)w.

It is easy to see w = (wg)zxg, where wg = I‘gldzl + I‘;szzg. For~ € SL(2,Z), we
define S = S(~) by the transformation

(d(v21),d(vz)) = (dz1,dz2)S.



It is easy to show that for v € SL2(R), we have vD = D=~ if and only if v(w) =
—S—1ds + s~ 1ws.

For the Levi-Civita connection D, since the matrices w and S are diagonal matrices,
the equality of matrices v(w) = —S~1dS 4+ S~1wS is actually the following two
equalities

v(wi) = =87 'dS1 + wi and ~(w2) = —S;'dS; + w2,
where w? = T ;dz;, and S; = (cz;+d)~?fori = 1, 2. Infact, for any connection D,
if it sends (r, s) form to (7, s) form, then D has the decomposition D = D10 4 D01

where D10 is the holomorphic part. The two equalities above give D1V and DY1
respectively.



Naturally we give the following definition: The modular connection coefficients on H is
a C>°-function I' such that w = I'dz and

y(w) =—-8"1dS +w, Vv ( CCL Z ) € SLa(Z).
The corresponding connection D is called a modular connection, which satisfies v D =
D~ for v € SLa(Z). If T is a holomorphic function, we also call the connection D to
be holomorphic.



Notice that here we only consider the holomorphic part, and ignore the part on dz. Let
us see what condition the function I' should satisfy.

Since dS = e Jrd)gdz and w = I'dz, we have
y(w)=—-8"1dS + w <— () =T+ ac
(cz + d)? cz +d’

where v = ( Cc" Z ) € SL2(Z). Butwe have knownI' = —Vy_l andI' = /—1G2(2)

satisfy the equality. These I' give us two modular connections D and D».



We have

Di(fd) = (f ~ V)@ Da(fde) = (5~ V=16Ga(2)1)(d2)*

Furthermore

Di(F(d=)*) = (5 — 2=,

Dy(f(d2)") = (T — V=AGa(2) ) ().

Since vD; = D;v,V~ € SLa(Z) and f(dz)¥ is invariant under the action of SLy(Z)
if £is a modular form of weight 2k, we get g—J; — %f and fil—J; — V/—1G2(2) f are
modular forms of weight 2k 4+ 2 and the former is non-holomorphic and the latter is
holomorphic.



In addition, /—1G2(=z) is the unique holomorphic function T" on H which satisfies
~(T) 2c < a b )

This is because v(v/—1G2(z) —T') = (cz+d)?(v/—1G2(z) —T), V~ € SLy(Z),
so v/—1G2(z) — I' is a modular form of weight 2, must be 0.

Thus there exists only one holomorphic modular connection on H. We can't find second
holomorphic derivation of a modular form.



2. Apply to Siegel modular forms
2.1. The Levi-Civita connection

The Siegel upper half plane of degree g is defined to be the g(g + 1) /2 dimensional
open complex variety

Hy:={Z =X ++v—1Y € M(g,C) | Z' = Z,Y > 0}.
Write Z = (Z;;). Set Q@ = {(4,5) | 1 <1 < j < g} with the dictionary order. Then

1dZ;;, dZZ-j | (¢,3) € Q} is a series of coordinates on Hg. The symplectic group of

degree g over R is the group

Sp(2g, R) = {M c GL(2g,R) ( MJM? = J} ,

_ 0 Iy
whereJ_(_Ig O)'



The Siegel modular group I'y := Sp(2g,Z) C Sp(2g, R) acts on Hg by the rule:

1(2) = (AZ+B)(CZ+ D)™, Zety v=( g p ) ESn29.)

By computing the connection coefficients I‘fj by the formula, we can determine the

Levi-Civita connection associated to the invariant metric ds? = Tr(Y ~1dZ - Y ~1dZ)
on the Siegel upper plane Hg. Actually we have got,

Lemma .1 Let(r,s) € Q2. Then

D(ers) — —V _1(dZsla dZg2y -+ - , dZSg)Y_l : (erla dZy2, .-, erg)t-



Now we recall the definition of Siegel modular forms: A (classical) Siegel modular form
of weight k (and degree g) is a holomorphic function f : Hg — C such that

f(v(2)) = det(CZ + D)*f(2)

) € Sp(2g, Z) (with the usual holomorphicity requirement at oo

ey

forall v = ( 5
-\ C
when g = 1).



Let Mo (I'g) denote the C-vector space of (non-holomorphic) Siegel modular forms
of weight 2k. Using the Levi-Civita connection above, we get

Theorem .2 Let f € Mo, (I'y). Then

det ([8% — V—_lkY_l} f) € Magk12(T'g),

o _ (1+d0;; o

) with 8;; = 1 ifi = j and 8;; = 0 if i # j.
gxg

Furthermore, we have the following more general result.



Theorem .3 For any symmetric g X g matrix G(Z) = (G;;(Z)) consisting of C* (or
holomorphic) functions which satisfies, for any v € Sp(2g,Z) in the form above,

(CZ + D) 'v(G) = G- (CZ + D)t + 2C%,

there exists a unique modular connection satisfying

g
D(dZys) = — Y G;jdZsdZ,;,
1,J=1

and for f € Mg (I'g), we have det ([3% — kG} f) € Magp4+2(Tg)-

Moreover there is at most one holomorphic G(Z) satisfying the transformation formula,
which, if exists, would give the holomorphic derivation of Siegel modular forms.

But we can’t prove the existence of the holomorphic G.



H. Maass once constructed a non-holomorphic derivative operator of a Siegel modular
form f of weight k by invariant differential operators

Dy f(Z) = det(Y)**1 det (8%) det(Y)E T £(Z)],

where k = (g + 1)/2 and the determinant of 8% is taken first, and showed that
the differential operator Dy, sends M, to My 5. Compared to our operator, Dy is
linear with respect to f. Moreover, our operator is a combination of degree 1 partial
derivatives of f, but Dy, is a combination of degree g partial derivatives.



3. Apply to Jacobi forms

3.1. The invariant metric

Let’s recall the theory of Jacobi forms first. For given positive integers n, m, let Hy,
be the Siegel upper half plane of degree n, and Hy, y, := Hjp X c(mn) called the
Siegel-Jacobi space. An element of Hy, ,, can be written as (Z, W) with Z = Zt =
(Zij) S Mn,na W = (’wrs) S Mm,n-

Let Sp(n, R) be the symplectic group of degree n, and define

Hﬂg{n’m) = {( A, u36) | A, € R™™) g e RO™W™) o 1 2t symmetric}.

It is called the Heisenberg group, and endowed with the multiplication law:

Apsk)o (N, pwsk) = A+ X, p+ 1/, 6+ 6"+ X/ — ptX)



The Jacobi group of degree n, index m is defined to be G’ := Sp(n,R) K Hlé{"’m)
endowed with the following multiplication law

(M, (A 3 0) )+ (M, (N, s &) ) = (MM, G+ N g5 b+ 2/ = aX') )

with M, M’ € Sp(n, R); (A, 5 &), (N, /s ') € H"™and (X, fi) = (A, ) M.
G acts on Hiy, 1, by

(M, (A, p: K,))-(z, W) = (M . Z,(W + AZ + p)(CZ + D)—l)



A (holomorphic) Jacobi form f of weight k and index M, with M a positive definite
half integer m X m matrix, is a (holomorphic) function on Hy, 4, which satisfies the
translation law of :

f(g(Z,W)) = det(CZ + D)*

% 2™V —1Tt(MW (CZ+D) 'CW'-MAZXN+22AW*—pXh) F(Z, W)

forg = ((é g),(A,u,n))E GY.

The set of Jacobi forms of weight k and index M is denoted by Jj. ps, and the subset

of holomorphic Jacobi forms are denoted by J,’g”‘]’&.



The G -invariant metric on the Siegel-Jacobi plane H1,.m Was given by J.-H. Yang: For
any two positive real numbers a and b, the following metric on Hy, m

sy miap =aTe(Y 'dZY ~'dZ)
+ b{Te(YIVVYtdzy ~1dZ) + Te(Y 1 (dW) {dW)
— (VY YdZY ~1(dW")) — To(VY ~1dZY 1 (dW)})}

is G -invariant.



3.2. The Levi-Civita connection

The idea to construct derivative operators is that if we view the Siegel-Jacobi space as
a Riemann surface with an invariant metric under the Jacobi group, then the Levi-Civita
connection associated to this metric sends invariant sections to invariant sections.

Now we determine the Levi-Civita connection. Let Y, V' denote the imaginary parts of
Z and W respectively, and write

dZ = (dzij) and dW = (dwm)



Theorem .4 Let D be the Levi-Civita connection on the Riemann surface Hy, y, asso-
ciated to the invariant metric above. Then
v —1b 29y~ + Yy~ lvivy—1 —y-lv? dZ
2a —vy! I dW
(1)
y-lvitvy-t —y-lv? dZ
—vy—! I dW

D(dZ) = (dZ,dW?) (

D(dW) :%VY_l(dZ, dw?) (

4+ v/=1dwWYy ldz
(2)

where D(dZ) = (D(dz;;)) and D(dW') = (D(dw;;))-



3.3. Some differential operators of Jacobi forms

In the case of the degree n = 1, for a Jacobi form f of weight k& and index M, by
taking the connection on the G¥-invariant form h = fy* exp(—4nxMwv? /y) f, we get
two raising operators X, Y and two lowering operators X _, Y_, which generated
all linear differential operators of the Jacobi forms when m = 1, and non-holomorphic
heat operator for general m. These cover old results. For general m, we also get some
new holomorphic or meromorphic operators. For example,

% f 9

hol f hol
I f € IPGy, then — % — 8TMV/=1_" 4 2M(1 — 2k)Gaf € J/i%h ar.



As for higher degree cases of n > 1, we are not able to get linear operators. How-
ever we can define some operators in the determinant form, including both raising and
lowering operators and the heat operator, generalizing the classical case.

Actually we get

Theorem .5 Let f € Jkm be a Jacobi form on Hy, . Then we have

(a) If n = m, Dl(f) = det(2L + 4ny/=TL(Y " WIM)f) € JukginM
01(f) = det( Y) € Jnk—1,nM-

Ifn < m, choose any n rows of the matrix above and take determinant, we still get
Jacobi forms in Jp gy 1,n0 @nd Jpg_1 0 respectively.



(b) Lps(f) = det(— sm/_ S+ 50 M~ 1( )t—47rka_1—|—2m7rfY_1) =
Jnk—i—Z,nM:

Do(f) = det(94, — Y5y -1 4 ony/ =Ty - WWiMVY1f 4 S vy —1) ¢
Jnk—|—2,nMJ

d2(f) = (‘let(afY2 + 5 oL wVY) € Jnk—2nM-

Besides these, we also obtain the following holomorphic operators like the Rankin-
Cohen brackets.



Theorem .6 Let f € J,?l"lMl andg € J,?;’IM2 on Hy,,m, then

9 9
(a)lfn = m, det(Ma3krg — M1y f) € Jp(ky+hy)+1,nM; My

(b) In general,

19194 A
_ g ¢
S V/ sl Y i — 2k
WM (gyy) Fm = 2k1)
is a Jacobi form of weight (k1 + k2) + 1, index n My M.

0, 0,
det ( —SW\/—la—ég(m — 2k2) + Ml_l(ﬁ)tg(m — 2k>)

dg
8T/ —1—— — 2kq) —
+ 8 8Zf(m 1)



Using these results, we further obtain the following explicit invariant differential opera-
tors:

There exists operator matrix I' _I' . which is invariant differential operator matrix on
Hy,m, thus each of the (k, 1) entries of this matrix is an invariant differential operator

on Hy m. Also there are invariant differential operators HJY, T,z 13 Uk 15 Vi,1- We omit
the construction of these operators.

The invariant differential operators are these operators which are invariant under the
action of the Jacobi group GY. The result above is known only inthecasen = 1
before.



Thanks!



