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p-adic modular forms
They were invented by J.-P.Serre [Se73] as limits of q-expansions of
modular forms with rational coe�cients for Γ = SL2(Z). The ring
Mp of such forms contains M = ⊕k≥0Mk(Γ,Z) = Z[E4,E6], and it
contains E2 = 1− 24

∑
n≥1 σ1(n)qn.

On the other hand,

Ẽ2 = − 3
πy

+ E2 = −12S + E2, where S =
1

4πy
,

is a nearly holomorphic modular form. Let N be the ring of such
forms over Z.
Therefore

Ẽ2|S=0 = E2

is a p-adic modular form.
Elements of the ring M] = N|S=0 are quasimodular forms. These
phenomena are quite general and can be used in computations and
proofs.
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Using algebraic and p-adic modular forms in computations
There are several methods to compute various L-values attachted
to Siegel modular forms using Petersson products of holomorphic
and nearly-holomorphic Siegel modular forms :
the Rankin-Selberg method,
the doubling method (pull-back method).
A well-known example is the standard zeta function D(s, f , χ) of a
Siegel cusp eigenform f ∈ Snk(Γ) of genus n (with local factors of
degree 2n + 1) and χ a Dirichlet character.
Theorem (the case of even genus n (Courtieu-A.P.), via the
Rankin-Selberg method) gives a p-adic interpolation of the
normailzed critical values D∗(s, f , χ) using Andrianov-Kalinin
integral representation of these values 1 + n − k ≤ s ≤ k − n
through the Petersson product 〈f , θT0

δrE 〉 where δr is a certain
composition of Maass-Shimura di�erential operators, θT0

a
theta-series of weight n/2, attached to a �xed n × n matrix T0.
Theorem (the general case (by Boecherer-Schmidt), via the
doubling method ) uses Boecherer�Garrett�Shimura identity (a
pull-back formula)3



A pull-back formula
allows to compute the critical values through certain double
Petersson product by integrating over z ∈ Hn the identity:

Λ(l + 2s, χ)D(l + 2s − n, f , χ)f =
〈
f (w),E 2n

l ,ν,χ,s(diag[z ,w ])〉w .

Here k = l + ν, ν ≥ 0, Λ(l + 2s, χ) is a product of special values of
Dirichlet L-functions and Γ-functions, E 2n

l ,ν,χ,s a higher twist of a
Siegel-Eisenstein series on (z ,w) ∈ Hn ×Hn (see [Boe85],
[Boe-Schm]).
A p-adic construction uses congruences for the L-values, expressed
through the Fourier coe�cients of the Siegel modular forms and
nearly-modular forms.
We indicate a new approach of computing the Petersson products
and L-values, using an injection of algebraic nearly holomorphic
modular forms into p-adic modular forms.
Applications to families of Siegel modular forms are given.
Explicit two-parameter families are constructed.
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A recent discovery by Takashi Ichikawa (Saga University),
[Ich12], J. reine angew. Math., [Ich13]

allows to inject nearly-holomorphic arithmetical (vector valued)
Siegel modular forms into p-adic modular forms.
Via the Fourier expansions, the image of this injection is
represented by certain quasimodular holomorphic forms like
E2 = 1− 24

∑
n≥1

σ1(n)qn, with algebraic Fourier expansions.

This description provides many advantages, both computational
and theoretical, in the study of algebraic parts of Petersson
products and L-values, which we would like to develop here.
This work is related to a recent preprint [BoeNa13] by S. Boecherer
and Shoyu Nagaoka where it is shown that Siegel modular forms of
level Γ0(pm) are p-adic modular forms. Moreover they show that
derivatives of such Siegel modular forms are p-adic. Parts of these
results are also valid for vector-valued modular forms.
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Arithmetical nearly-holomorphic Siegel modular forms
Nearly-holomorphic Siegel modular forms over a sub�eld k of C are
certain Cd -valued smooth functions f of Z = X +

√
−1Y ∈ Hn

given by the following expression

f (Z ) =
∑
T

PT (S)qT ,

where T run through half-integral semi-positive matricies,
S = (4πY )−1 a symmetric matrix, qT = exp(2π

√
−1tr(TZ )),

PT (S) are vectors of degree d whose entries are polynomials over k
of the entries of S .
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Formal Fourier expansions
Algebraically we may use the notation

qT = exp(2πitr(TZ )) =
n∏

i=1

qTii

ii

∏
i<j

q
2Tij

ij

∈ C[[q11, . . . , qnn]][qij , q
−1
ij ]i ,j=1,··· ,n

(with qij = exp(2π(
√
−1Zi ,j))).

The elements qT form a multiplicative semi-group so that
qT1 · qT2 = qT1+T2 , and one may consider f as a formal
q-expansion over an arbitrary ring A via elements of the semi -
group algebra A[[qBn ]].
Namely, f ∈ Se(Sym2(An),A[[qBn ]]d ), where Se denotes the
A-polynomial mappings of degree e on symmetric matricies
S ∈ Sym2(An) of order n with vector values in A[[qBn ]]d .
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Holomorphic projection of nearly-holomorphic Siegel
modular forms

Recall a passage from nearly holomorphic to holomorphic Siegel
modular forms preserving the Petersson product with a given f ∈ Snk .
For an algebra homomorphism ρ : GLn → GLd over k , denote by
Nρ(k) the k-vector space of all Cd -valued smooth functions which
are nearly holomorphic over k with ρ-automorphic condition for
Γ(N). The elements of Nρ(k) are nearly holomorphic Siegel modular
forms over k of weight ρ, degree n, and level N.

Let ρ = det⊗k ⊗ρ0. By a structure theorem of Shimura (Prop. 14.2
at p.109 of [Sh00]), provided that k is large enough, for h ∈ Nρ(k),

h = Ak,ρ0(h) + ∆, where Ak,ρ0(h) ∈Mρ(k) is a holomorphic

function and ∆ is a �nite sum of images of certain holomorphic
functions under di�erential operators of Maass-Shimura type.
Analytically Ak,ρ0(h) is the "holomorphic projection" of h.
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Using Fourier expansions as p-adic modular forms
A method of computing with arithmetical nearly-holomorphic Siegel
modular forms is based on the use of Ichikawa's mapping

ιp : Nρ→Mp, ρ
Fc
↪→ (Rg ,p)d ,where Fc is the Fourier expansion at a cusp c,

Rn,p = Cp[[q11, . . . , qnn]][qij , q
−1
ij ]i ,j=1,··· ,n.

Then the poynomial Fourier expansion of a nearly holomorphic form

f (Z ) =
∑
T

aT (S)qT ∈ Nρ(Q),

over Q becomes the Fourier expansion of an algebraic p-adic form
over ip(Q) ⊂ Cp, whose Fourier coe�cients can be obtained using
Ichikawa's approach in [Ich13] by putting S = 0:

f 7→ Fc(ιp(f )) =
∑
T

aT (0)qT ∈ Fc(Mp, ρ).

Example. f = Ẽ2 = E2 − 3

πy = −12S + 1− 24
∑

n≥1 σ1(n)qn

gives the p-adic modular form Fc(ιp(f )) = E2 = Ẽ2|S=0 over Z,
which is also a quasimodular form of weight 2.
There are nice relations like D(E2) = 1

12
(E 2

2
− E4) [MaRo5]
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Computing the Petersson products

The Petersson product h(Z ) =
∑

T bTqT ∈M ⊂Mρ(Q̄) by a
given modular form f (Z ) =

∑
T aTqT ∈M ⊂Mρ(Q̄) gives a

linear form

`f : h 7→
〈
f , h
〉〈

f , f
〉

de�ned over a subring R ⊂ Q̄. Thus `f can be expressed through
the Fourier coe�cients of h in the case when there is a �nite basis
of the dual space consisting of certain Fourier coe�cients.

`Ti
: h 7→ bTi

(i = 1, n).

It follows that `f (h) =
∑

i libTi
.
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How to prove Kummer-type congruences using the Fourier
coe�cients?

Suppose that we are given some L-function L∗f (s, χ) attached to a
Siegel modular form f and assume that for in�nitely many "critical
pairs" (sj , χj) one has an integral representation

L∗f (sj , χj) =
〈
f , hj

〉
with all hj =

∑
T bj ,TqT ∈M in a certain

�nite-dimensional space M containing f and de�ned over Q̄.
We want to prove the following Kummer-type congruences:

∀x ∈ Z∗p
∑
j

βjχjx
kj ≡ 0 mod pN =⇒

∑
j

βj
L∗f (sj , χj)〈

f , f
〉 ≡ 0 mod pN .

for any choice of βj ∈ Q̄. Here kj = sj − s0 or kj = −sj + s0,
according that there is s0 = minj sj or s0 = maxj sj .
Using the above expression for `f (hj) =

∑
j li ,jbj ,Ti

, the above
congruences reduce to∑

i ,j

li ,jβjbj ,Ti
≡ 0 mod pN .
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Reduction to a �nite dimensional case
In order to prove the congruences∑

i ,j

li ,jβjbj ,Ti
≡ 0 mod pN .

in general we use the functions hj which belong only to a certain
in�nite dimensional Q-vector space M = M(Q)

M(Q) :=
⋃
m≥0

Mk(Npm,Q).

Starting from the functions hj , we use their caracteristic projection
π = πα on the characteristic subspace Mα (of generalized
eigenvectors) associated to a non-zero eigenvalue α Atkin's
U-operator on f which turns out to be of �xed �nite dimension so
that for all j , πα(hj) ∈Mα.
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From holomorphic to nearly holomorphic and p-adic
modular forms

Next we explain, how to treat the functions hj which belong to a
certain in�nite dimensional Q-vector space N ⊂ Nρ(Q) (of nearly
holomorphic modular forms).
Usually, hj can be expressed through the functions δkj (ϕ0(χj)) for a
certain non-negative power kj of the Maass-Shimura-type di�erential
operator applied to a holomorphic form ϕ0(χj).
Then the idea is to proceed in two steps:
1) to pass from the in�nite dimensional Q-vector space N = N(Q)
of nearly holomorphic modular forms,

N(Q) :=
⋃
m≥0

Nk,r (Np
m,Q) (of the depth r).

to a �xed �nite dimensional characteristic subspace Nα ⊂ N(Np) of
Up in the same way as for the holomorphic forms.
This step respects the Petersson products with a conjugate f 0 of an
eigenfunction f0 of U(p):〈

f 0, h
〉

= α−m
〈
f 0, |U(p)mh

〉
=
〈
f 0, πα(h)

〉
.

13



From holomorphic to nearly holomorphic and p-adic
modular forms (continued)

2) To apply Ichikawa's mapping ιp : N(Np)→Mp(Np) to a certain
space Mp(Np) of p-adic Siegel modular forms. Assume algebraically,

hj =
∑
T

bj ,T (S)qT 7→ κ(hj) =
∑
T

bj ,T (0)qT ,

which is also a certain Siegel quasi-modular form. Under this
mapping, computation become much easier, as the action of δkj

becomes simply a kj -power of the Ramanujan Θ-operator

Θ :
∑
T

bTq
T 7→

∑
T

det(T )bTq
T ,

in the scalar-valued case. In the vector-valued case such operators
were studied in [BoeNa13].
After this step, proving the Kummer-type congruences reduces to
those for the Fourier coe�cients the quasimodular forms κ(hj(χj))
which can be explicitely evaluated using the Θ-operator.
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How to compute with Siegel modular forms?
There are several types of Siegel modular forms (vector-valued,
nearly-holomorphic, quasi-modular, p-adic). We consider modular

forms de�ned over Q, over a number �eld
k ⊂ Q̄ i∞

↪→C

k ⊂ Q̄
ip
↪→Cp

or over a

ring R, and attached to an algebraic representation ρ : GLn → GLd ,
for simplicity, attached to an algebraic representation
ρk = ρ0 ⊗ det⊗k (like in [BoeNa13]).
We may take R = C,Cp,Λ = Zp[[T ]], · · · , and treat these modular
forms as certain formal Fourier expansions over R.
Let us �x the congruence subgroup Γ of a nearly holomorphic
modular form f ∈ Nρ and its depth r as the maximal S-degree of
the poynomial Fourier Fourier coe�cients aT (S) of a nearly
holomorphic form

f =
∑
T

aT (S)qT ∈ Nρ(R),

over R , and denote by Nρ,r (Γ,R) the R-module of all such forms.
This module is locally-free of �nite rank, that is, over the fraction
�eld F = Frac(R), it becomes a �nite-dimensional F -vector space.
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Types of modular forms
I Mρ (holomorphic vector-valued Siegel modular forms attached

to an algebraic representation ρ : GLn → GLd )
I Nρ (nearly holomorphic vector-valued Siegel modular forms

attached to ρ over a number �eld k ⊂ Q̄ ↪→ C))
I M

]
ρ (quasi-modular vector-valued forms attached to ρ)

I M[
ρ (algebraic p-adic vector-valued forms attached to ρ over a

number �eld k ⊂ Q̄ ↪→ Cp)

De�nitions and interrelations:
I M

]
ρ,r = κ(Nρ) ⊂ Rd

n,∞, where κ : f 7→ f |S=0 =
∑

T PT (0)qT ,
where Rn,∞ = C[[q11, . . . , qnn]][qij , q

−1
ij ]i ,j=1,··· ,n.

I M[
ρ,r (R, Γ) = Fc(ιp(Nρ,r (R, Γ))) ⊂ Rd

n,p, where
Rn,p = Cp[[q11, . . . , qnn]][qij , q

−1
ij ]i ,j=1,··· ,n.

Let us �x the level Γ, the depth r , and a subring R of Q̄, then all
the R-modules Mρ(R, Γ), Nρ,r (R, Γ), M]

ρ,r (R, Γ), M[
ρ,r (R, Γ) are

then locally free of �nite rank.
In interesting cases, there is an inclusion M

]
ρ,r (R, Γ) ↪→M[

ρ,r (R, Γ).
If Γ = SL2(Z), k = 2, P = E2 is a p-adic modular form, see [Se73],
p.211.
Question:Prove it in general! (after discussions with S.Boecherer
and T.Ichikawa)
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Review of the algebraic theory
Following [Ha81], consider the columns Z1,Z2, . . . ,Zn of Z and the
Z-lattice LZ in Cn generated by {E1, . . . ,En,Z1, . . . ,Zn}, where
E1, . . . ,En are the columns of the identity matrix E . The torus
AZ = Cn/LZ is an abelian variety, and there is an analytic family
A −→ Hn whose �ber over the point Z is AZ .
Let us consider the quotient space Hn/Γ(N) of the Siegel upper half
space Hn of degree n by the integral symplectic group

Γ(N) =

{
γ =

(
Aγ Bγ
Cγ Dγ

) ∣∣∣ Aγ ≡ Dγ ≡ 1n
Bγ ≡ Cγ ≡ 0n

}
If N > 3, Γ(N) acts without �xed points on A = An and the
quotient is a smooth algebraic family An,N of abelian varieties with
level N structure over the quasi-projective variety
Hn,N(C) = Hn/Γ(N) de�ned over Q(ζN), where ζN is a primitive
N-th root of 1.
For positive integers n and N, Hn,N is the moduli space classifying
principally polarized abelian schemes of relative dimension n with
symplectic level N structure.17



De Rham and Hodge vector bundles
The �ber varieties A and An,N give rise to a series of vector bundles
over Hn and Hn,N(C).
Notations

I H1

DR(A/Hn) and H1

DR(An,N/Hn,N)
the relative algebraic De Rham cohomology bundles of
dimension 2n over Hn and Hn,N) respectively. Their �bers at
Z ∈ Hn are H1 := HomC(LZ ⊗ C,C) generated by αj , βj :

αi (
∑
j

ajEj+bjZj) = ai , βi (
∑
j

ajEj+bjZj) = bi (i = 1, · · · , n).

I H1
∞ the C∞ vector bundle associated to H1

DR

(over Hn and Hn,N). It splits as a direct sum
H1
∞ = H

1,0
∞ ⊗H

0,1
∞ and induces the Hodge decomposition on

the De Rham cohomology of each �ber.
I The summand ω = H

1,0
∞ is the bundle of relative 1-forms for

either A/Hn or An,N/Hn,N . Let us denote by π : An,N → Hn,N

the universal abelian scheme with 0-section s, and by the
Hodge bundle of rank n de�ned as

E = π∗(Ω1

An,N/Hn,N
) = s∗(Ω1

An,N/Hn,N
)

I The bundle of holomorphic 1-forms on the base Hn or on Hn,N ,
is denoted Ω.
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Algebraic Siegel modular forms
are de�ned as global sections of Eρ, the locally free sheaf on
Hn,N ⊗ R obtained from twisting the Hodge bundle E by ρ.
De�nition. Let R be a Z[1/N, ζN ]-algebra. For an algebra
homomorphism ρ : GLn → GLd over R , de�ne algebraic Siegel
modular forms over R as elements of Mρ(R) = H0(Hn,N ⊗ R,Eρ),
called of weight ρ, degree n, level N.
If ρ = det⊗k : GLn → Gm, then elements of Mk(R) = M

det
⊗k (R)

are called of weight k . For R = C, each Z ∈ Hn, let
AZ = Cn/(Zn + Zn · Z ) be the corresponding abelian variety over
C, and (u1, ..., un) be the natural coordinates on the universal cover
Cn of AZ . Then E is trivialized over Hn by du1, ..., dun, and
f ∈Mρ(C) is a complex analytic section of Eρ on
Hn,N(C) = Hn/Γ(N). Hence f is a Cd -valued holomorphic
function on Hn satisfying the ρ-automorphic condition:

f (Z ) = ρ(CγZ + Dγ)−1 · f (γ(Z ))

(
Z ∈ Hn, γ =

(
Aγ Bγ
Cγ Dγ

))
,

because AZ
∼→ Aγ(Z); t(u1, ..., un) 7→ (CZ + D)−1 · t(u1, ..., un),

and γ acts equivariantly on the trivialization of E over Hn as the
left multiplication by (CZ + D)−1.
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Algebraic Fourier expansion
can be de�ned algebraically using an algebraic test object over the
ring Rn=Z[[q11, . . . , qnn]][qij , q

−1
ij ]]i ,j=1,··· ,n, where qi ,j(1 ≤ i , j ≤ n)

are variables with symetry qi ,j = qj ,i .
Mumford constructs in [Mu72] an object represented over Rn as

(Gm)n/〈(qi ,j)i=1,··· ,n
∣∣1 ≤ j ≤ n〉, (Gm)n = Spec(Z[x±1

1
, . . . , x±1n ]).

For the level N, at each 0-dimensional cusp c on H∗n,N , this
construction gives an abelian variety over

Rn,N = Z[1/N, ζN ][[q1/N
11

, . . . , q1/Nnn ]][q±1/Nij ]i ,j=1,··· ,n

with a symplectic level N structure, and ωi = dxi/xi (1 ≤ i ≤ n)
form a basis of regular 1-forms.
We may view algebraically Siegel modular forms as certain sections
of vector bundles over Hn,N . Using the morphism
Spec(Rn,N)→ Hn,N , E becomes (Rn,N ⊗ R)n in the basis
ω1, . . . , ωn.
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Fourier expansion map and q-expansion principle
For an algebraic representation ρ : GLn → GLd , Eρ becomes in the
above basis ωi

Eρ ×Hn,N⊗R Spec(Rn,N ⊗ R) = (Rn,N ⊗ R)d .

For an R-module M, the space of Siegel modular forms with
coe�cients in M of weight ρ is de�ned as
Mρ(M) = H0(Hn,N ⊗ R,Eρ ⊗R M). Then the evaluation on
Mumford's abelian scheme gives a homomorphism

Fc : Mρ(M)→ (Rn,N ⊗Z[1/N,ζN ] M)d

which is called the Fourier expansion map associated with c .
According to [Ich13], Theorem 2, Fc satis�es the following
q-expansion principle:
If M ′ is a sub R-module of M and f ∈Mρ(M) satis�es that
Fc(f ) ∈ (Rn,N ⊗Z[1/N,ζN ] M

′)d , then f ∈Mρ(M ′).
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Di�erential operators on modular forms, [Sh00],[Ich13]
Let Se(Sym2(Rn),Rd ) be the R-module of all polynomial maps of
Sym2(Rn) into Rd homogeneous of degree e. For a Cd -valued
smooth function f of Z = (zij)i ,j = X +

√
−1Y ∈ Hn, consider

S1(Sym2(Cn),Cd )-valued smooth functions (Df )(u), (Cf )(u)
(u = (uij)i ,j ∈ Sym2(Cn)) of Z ∈ Hn

(Df )(u) =
∑

1≤i≤j≤n
uij

∂f

∂(2π
√
−1zij)

, (Cf )(u) = (Df )((Z − Z )u(Z − Z )),

Let ρ⊗ τ e : GLn(R) = GL(Rn)→ GL(Se(Sym2(Rn),Rd )) be the
following R-homomorphism

[(ρ⊗ τ e)(α)(h)](u) := ρ(α)h(tα · u · α),

for α ∈ GLn(R), h ∈ Se(Sym2(Rn),Rd ), u ∈ Sym2(Rn).
Then de�ne Se(Sym2(Cn),Cn)-valued analytic functions C e(f ), De

C e(f ),De
ρ (f ) of Z ∈ Hn inductively, so that

De
ρ (f ) = (ρ⊗ τ e)(Z − Z )−1C e(ρ(Z − Z )f ).

De
ρ coincides with (2π

√
−1)−e times Shimura's di�erential operator;

it acts on arithmetical nearly-holomorphic Siegel modular forms.
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Arithmetical nearly-holomorphic Siegel modular forms
Let f (Z ) =

∑
T

aT (S) · qT/N ∈ Nr
ρ(k) be a nearly holomorphic

Siegel modular forms over k , of weight ρ, degree n, level N for is a
sub�eld k of C containing ζN , qT/N = exp(2π

√
−1tr(TZ )/N), so

that f is a Cd -valued smooth function of Z = X +
√
−1Y ∈ Hn,

satisfying ρ-automorphic condition for Γ(N) for an algebraic
homomorphism ρ : GLn → GLd , namely

f (γ(Z )) = ρ(CγZ + Dγ)f (Z )

(
Z ∈ Hn, γ =

(
Aγ Bγ
Cγ Dγ

))
, where

aT (S) ∈ Cd are vectors whose entries are polynomials over k of
degree r of the entries of the symmetric matrix S = (4πY )−1.
According to [Sh00], Chapter III, 12.10, if f satis�es the
ρ-automorphic condition for Γ(N), then De

ρ (f )(u) satis�es the
ρ⊗ τ e- automorphic condition: De

ρ : Nρ → Nρ⊗τe (de�ned over Q̄).
If f is arithmetical, De

ρ (f )(u) is arithmetica and can be expressed
through the Gauss-Manin connection ([Ha81], p.96) ∇ = 1⊗ d ,
∇(dui ) =

∑
j βjdZij , ∇ : H1

DR(A/Hn)→ H1

DR(A/Hn)⊗ Ω1(Hn),

using H1

DR(A/Hn)
∼→ HomC(LZ ⊗ C,C)⊗ OHn . Recall that

∇ computes to which extent the sections dui fail to have constant
periods: dui = αi +

∑
j βjZij . Also, ∇ can be algebraically de�ned.
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Arithmeticity of Shimura's di�erential operator
([Ich12],[Ich13], [Ha81], �4, [Ka78])

Proposition (see 2.2 of [Ich13]). Let π : A→ Hn be the analytic
family of

AZ = Cn/(Zn + Zn · Z )(Z ∈ Hn).

Then the normalized Shimura's di�erential operator De
ρ is obtained

from the composition

Eρ → Eρ ⊗ (Ω1

Hn
)⊗e → Eρ ⊗ (Sym2(π∗(Ω1

A/Hn
)))⊗e ,

the �rst map is given by the Gauss-Manin connection
∇ : H1

DR(A/Hn)→ H1

DR(A/Hn)⊗ Ω1

Hn
together with the projection

onto E = H1,0 in the Hodge decomposition of H1

DR(A/Hn),
H1

DR(A/Hn)→ π∗(Ω1

A/Hn
); the second map is given by the

Kodaira-Spencer isomorphism

Ω1

Hn

∼→ Sym2(π∗(Ω1

A/Hn
)),

dqi ,j
qi ,j
↔ ωiωj = duiduj(1 ≤ i , j ≤ n)
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Computing with families of Siegel modular forms
Let Λ = Zp[[T ]] be the Iwasawa algebra, and consider Serre's ring

Rn,Λ = Λ[[q11, . . . , qnn]][q±1ij ]i ,j=1,··· ,n.

For any pair (k , χ) as above consider the homomorphisms:

κk,χ : Λ→ Cp,R
d
n,Λ 7→ Rd

n,Cp
, where T 7→ χ(1 + p)(1 + p)k − 1.

De�nition (families of Siegel modular forms)

Let f ∈ Rd
n,Λ such that for in�nitely many pairs (k , χ) as above,

κk,χ(f) ∈Mρk ((ip(Q̄)))
Fc
↪→ Rd

n,Cp

is the Fourier expansion at c of a Siegel modular form over Q̄.
All such f generate the Λ-submodule Mρk (Λ) ⊂ Rd

n,Λ of Λ-adic
Siegel modular forms of weight ρ.
In the same way, the Λ-submodule M

]
ρk (Λ) ⊂ Rn,Λ of Λ-adic Siegel

quasi-modular forms is de�ned.
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Examples of families of Siegel modular forms
can be constructed via di�erential operators of Maass
∆ = det(1+δij

2

∂
∂zij

), so that ∆qT = det(T )qT . Shimura's operator

δk f (Z ) = (−4π)−n det(Z − Z̄ )
1+n
2
−k∆(det(Z − Z̄ )k−

1+n
2

+1f (Z )
acts on qT using ρr : GLn(C)→ GL(∧rCn) and its adjoint ρ∗r :

δk(qT ) =
n∑

l=0

(−1)n−lcn−l (k + 1− 1 + n

2
)tr(tρn−l (S)ρ∗l (T ))qT ,

where cn−l (s) = s(s − 1

2
) · · · (s − n−l−1

2
), S = (2πi(z̄ − z))−1.

I Nearly holomorphic Λ-adic Siegel-Eisenstein series as in [PaSE]
can be produced from the pairs (−s, χ): if s is a nonpositive
integer such that k + 2s > n + 1,

Ek(Z , s, χ) =
−s−1∏
i=0

cn(k + 2s + 2i)−1δ(−s)
k+2s(Ek+2s(Z , 0, χ)).

26



Examples of families of Siegel modular forms (continued)

I Ichikawa's construction: quasi-holomorphic (and p-adic) Siegel
- Eisenstein series obtained in [Ich13] using the injection ιp

ιp(πnsEk(Z , s, χ)) =
−s−1∏
i=0

cn(k+2s+2i)−1
∑
T

det(T )−sbk+2s(T )qT ,

where
Ek+2s(Z , 0, χ) =

∑
T bk+2s(T )qT , k + 2s > n + 1, s ∈ Z.

I A two-variable family is for the parameters
(k + 2s, s), k + 2s > n + 1, s ∈ Z will be now constructed.
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Normalized Siegel-Eisenstein series of two variables
Let us start with an explicit family described in [Ike01], [PaSE],
[Pa91] as follows

Enk = En
k (z)2n/2ζ(1− k)

[n/2]∏
i=1

ζ(1− 2k + 2i) =
∑
T

aT (Enk)qT ,

where for any non-degenerate matrice T of quadratic character ψT :

aT (Enk)

= 2−
n
2 detT k− n+1

2 MT (k)×

{
L(1− k + n

2
, ψT )C

n
2
−k+(1/2)

T , n even,

1, n odd,

(CT= cond(ψT ), MT (k) a �nite Euler product over `| det(2T ).
Starting from the holomorphic series of weight k > n + 1 and s = 0,
let us move to all points (k + 2s, s), k + 2s > n + 1, s ∈ Z, s ≤ 0.
Then Ichikawa's construction is applicable and it provides a
two-variable family.
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Examples of families of Siegel modular forms (continued)

I Ikeda-type families of cusp forms of even genus [PaIsr11]
(reported in Luminy, May 2011). Start from a p-adic family

ϕ = {ϕ2k} : 2k 7→ ϕ2k =
∞∑
n=1

an(2k)qn ∈ Q[[q]] ⊂ Cp[[q]],

where the Fourier coe�cients an(2k) of the normalized cusp
Hecke eigenform ϕ2k and one of the Satake p-parameters
α(2k) := αp(2k) are given by certain p-adic analytic functions
k 7→ an(2k) for (n, p) = 1. The Fourier expansions of the
modular forms F = F2n(ϕ2k) can be explicitly evaluated where
L(F2n(ϕ), St, s) = ζ(s)

∏
2n
i=1

L(ϕ, s + k + n− i). This sequence
provide an example of a p-adic family of Siegel modular forms.

I Ikeda-Myawaki-type families of cusp forms of n = 3, [PaIsr11]
(reported in Luminy, May 2011).

I Families of Klingen-Eisenstein series extended in [JA13] from
n = 2 to a general case
(reported in Journées Arithmétiques, Grenoble, July 2013).
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Thank you!
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