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D. H. Lehmer’s conjecture.

q = eπiz, z ∈ H,

η(z) = q
1
12

∏
m≥1

(1 − q2m)

= q
1
12(1 − q2 − q4 + q10 + · · ·),

∆24 = η(z)24= q2
∏
m≥1

(1 − q2m)24

= q2 − 24q4 + 252q6 − 1472q8 + 4830q10

−6048q12 − 16744q14 + · · ·
=

∑
m≥1

τ (m)q2m.

τ is called Ramunujan’s τ function.
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Lehmer’s Conjecture (1947):

τ (m) ̸= 0, for all positive integers m.

( Compare with |τ (p)| < 2p
11
2 , Ramanujan-Deligne)

Lehmer’s conjecture is known to be true for the following

cases:

m < 3316799 ≈ 3 · 106 (Lehmer, 1947)
m < 214928639999 ≈ 2 · 1011 (Lehmer)
m < 1015 (Serre, 1985)
m < 22689242781695999 ≈ 2 · 1016 (Jordan-Kelly, 1999)
m < 22798241520242687999 ≈ 2 · 1019

(Bosman, 2007, arXiv:0710.1237v1)
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• Lehmer’s conjecture can be restated in terms of
spherical designs
(Venkov, de la Harpe, Pache, 2005(?)).

• The original Lehmer’s conjecture is still difficult
to prove.

• We consider similar and easier situations, and
solve them.

(We call these cases toy models, and solve
these cases.)
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Definition (Spherical t-designs)

Let r > 0.

Sn−1(r) = {(x1, x2, . . . , xn) ∈ Rn | x2
1 + x2

2 + · · · + x2
n = r2}

(⊂ Rn)

A finite subset X ⊂ Sn−1(r) is called a spherical t-design,

if and only if

1

|Sn−1(r)|

∫
Sn−1(r)

f(x)dσ(x) =
1

|X|
∑
x∈X

f(x)

for any polynomials f(x) = f(x1, x2, . . . , xn) of degree ≤ t.

Let Harmi(Rn) = the space of homogeneous harmonic polynomials
of degree i.
Then X ⊂ Sn−1(r) is a spherical t-design, if and only if

∑
x∈X f(x) = 0,

for all homogemeous harmonic polynomials of degrees 1 ≤ i ≤ t.
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Examples of spherical t-designs.

• t + 1 vertices of a regular (t + 1)-gon make a t-design in

S1(⊂ R2).

• 4 vertices of a regular simplex make a 2-design in S2(⊂ R3).

• 8 vertices of a regular cube make a 3-design in S2(⊂ R3).

• 12 vertices of a regular icosahedron make a 5-design in

S2(⊂ R3).

• 240 roots of type E8 make a 7-design in S7(
√
2)(⊂ R8).

• 196560 min. vectors of Leech lattice make an 11-design

in S23(2)(⊂ R24).

It is known that spherical t-designs on Sn−1 exist for any
n and any t (Seymour-Zaslavsky, 1984). However, explicit
constructions are very difficult for large t and n ≥ 3.
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Spherical t-designs which are obtained from shells
of lattices.

Let L be an integral lattice in Rn. For an integer
m, the shell Lm is defined by:

Lm = {x ∈ L | x · x = m} (⊂ Sn−1(
√
m)).

We are interested in the properties of shellsX = Lm

as spherical t-designs.
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Theorem of Venkov (1984)

Let L be an even unimodular lattice in Rn.
(Then n ≡ 0 (mod 8).) Moreover, let L be an
extremal even unimodular lattice, i.e.,

min{x · x | x ∈ L, x ̸= 0} = 2 + 2

[
n

24

]
.

Then, for any m, X = L2m is a spherical 11-design, if n ≡ 0 (mod 24)
7-design, if n ≡ 8 (mod 24)
3-design, if n ≡ 16 (mod 24)

In particular, any shell X = L2m of the E8 root
lattice L is a 7-design.
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Problem.
Is there any 8-design among the shells X = L2m of
E8-lattice L ?

(Note that a t-design is a t′-design if t′ ≤ t.)

Key Observation by Venkov:

For the E8-lattice L, the shell L2m is an 8-design,
if and only if τ (m) = 0,
where τ is the Ramanujan tau function.

So, D. H. Lehmer’s conjecture is equivalent to the
fact that there is no spherical 8-design among the
shells of the E8-lattice L.
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Theorem (Hecke, Schoeneberg, 1930’s)

For an even unimodular lattice L in Rn, the theta series ΘL(z)

of lattice L is defined by:

ΘL(z) =
∑
x∈L

eπiz(x·x) =
∞∑

m≥0

|L2m|q2m.

For P (x) ∈ Harmk(Rn), the theta series ΘL,P (z) with homo-

geneous harmonic polynomial P (x) is defined by:

ΘL,P (z) =
∑
x∈L

P (x)eπiz(x·x) =
∞∑

m≥0

(
∑

x∈L2m

P (x))q2m.

Then, ΘL,P (z) is a modular form of weight n
2
+ k w.r.t. SL(2,Z).

Moreover, ΘL,P (z) is a cusp form if k ≥ 1.
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Proof of Venkov’s theorem for E8-lattice L.

We need to show that ∑
x∈L2m

P (x) = 0

for any P ∈ Harmk(R8) with 1 ≤ k ≤ 7. Since the result is

obvious for odd k, we have only to show for k = 2, 4, 6. Now,

let take such P. Then ΘL,P (z) is a cusp form (w.r.t. SL(2,Z))
of weight n

2
+ k = 4 + k = 6, 8, or 10. Since there is no non-

zero cusp forms of weight 6, 8, and 10, we have:

ΘL,P (z) =
∞∑

m≥0

(
∑

x∈L2m

P (x))q2m ≡ 0.

Thus,
∑

x∈L2m
P (x) = 0. QED.
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Proof of Venkov’s Key Observation.

Let L be the E8-lattice in R8, and let P ∈ Harm8(R8). Then,

since the dimension of cusp form of weight 12(= n
2
+ k = 4 + 8)

is 1, we have

ΘL,P (z) =
∞∑

m≥0

(
∑

x∈L2m

P (x))q2m = c(P )∆24(z)

where ∆24 =
∑∞

m=1 τ (m)q2m.

• Let L2m not be an 8-design. Then there exists a P ∈ Harm8(R8)

such that
∑

x∈L2m
P (x)(= c(P )τ (m)) ̸= 0. So, τ (m) ̸= 0.

• Suppose τ (m) ̸= 0. We can easily see that L2(= roots of

type E8) is not an 8-design. Hence, there exists P ∈ Harm8(R8

such that
∑

x∈L2
P (x) ̸= 0. Hence c(P ) ̸= 0 (for this P .) Thus,∑

x∈L2m
P (x) = c(P )τ (m) ̸= 0. Hence L2m is not an 8-design.

QED.
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Lehmer’s attempt (1947) to try to prove τ (m) ̸= 0.

step 1.

(i) τ (mn) = τ (m)τ (n), if (m,n) = 1.

(ii) τ (pα+1) = τ (p)τ (pα) − p11τ (pα−1), for p = prime.

(iii) (|τ (p)| < 2 · p11, Ramanujan-Deligne) Put 2 cos θp = τ (p)p−11
2 . Then

τ (pα) = p
11
2
α ·

sin(α + 1)θp

sin θp

.

step 2. Let m be the smallest integer (m ≥ 1) such that τ (m) = 0. Then
m = pα, and moreover, m = p (i.e. α = 1).

step 3. If τ (p) = 0, p = prime, then we get many congruence conditions
w.r.t. several prime powers.
(So, he could get τ (p) ̸= 0, if p < 3316799, say.
But he could not prove it for general p.)
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We consider toy models of the following two lat-
tices.

(i) L = Z2 ⊂ R2

1
1

(ii) L = A2 ⊂ R2

√
2

√
2
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• Let L = Z2-lattice. Let Lm = {x ∈ L | x · x = m}.
Then all the non-empty shells Lm are 3-designs.

(Can any of them be a 4-design?)

• Let L = A2-lattice. Let Lm = {x ∈ L | x · x = m}.
Then all the non-empty shells Lm are 5-designs.

(Can any of them be a 6-design?)

Theorem (Bannai-Miezaki, 2010 [1])

(i) For the Z2-lattice L, no non-empty shell can

be a 4-design.

(ii) For the A2-lattice L, no non-empty shell can be
a 6-design.
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Sketch of Proof (for Z2-lattice L).

θ3(z) =
∑

m∈Z q
m2

= 1 + 2q + 2q4 + 2q9 + · · · ,
ΘL(z) = θ3(z)

2 =
∑∞

m=0 r2(m)qm

= 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + 4q9 + 8q10 + 8q13 + · · · .
(Note that r2(m) ̸= 0, if and only if any prime p ≡ 3 (mod

4) which divides m divides m exactly with even power.)

ΘL,P (z) = c1(P )∆8(z)θ3(z)
2,

where ∆8(z) = 1
16
θ3(z)

4θ4(z)
4 = q − 8q2 + 28q3 + · · · ,

and P ∈ Harm4(R2)

(Pache, 2005)

Now, let us set

∆8(z)θ3(z)
2 =

∑
m≥1

a(m)qm.



17

a(m) plays a similar role as τ (m) (for E8-lattice), and we

get:

• Lm is a 4-design, if and only if a(m) = 0.

We have

∆8(z)θ3(z)
2 =

∑
m≥1

a(m)qm ∈ S5(G(2), χ)

and

∆8(2z)θ3(2z)
2 =

∑
m≥1

a(m)q2m ∈ S5(Γ0(4), χ4),

the space of cusp forms of weight 5 w.r.t. Γ0(4) and a certain character

χ4.

S5(Γ0(4), χ4), is of dimension 1, and so ∆8(2z)θ3(2z)
2 is a

normalized Hecke eigenform. Then we have the following

assertions.
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step 1. (i) τ (mn) = τ (m)τ (n), if (m,n) = 1.
(ii) τ (pα+1) = τ (p)τ (pα) − χ4p

4τ (pα−1), for p = prime.
(iii) (|τ (p)| < 2 · p−2.) Put 2 cos θp = τ (p)p−2. Then (for p ≡ 1 (mod
4)),

τ (pα) = p2α ·
sin(α + 1)θp

sin θp

.

step 2. Let m be the smallest integer (m ≥ 1) such that r2(m) ̸= 0 and
a(m) = 0. Then m = pα, and moreover, m = p (i.e. α = 1) with
p ≡ 1 (mod 4).

step 3. For such prime p, we get

r2(p) = 8, (i.e. Lp = 8).

Then we can get a contradiction by considering some congruence prop-
erties.

An alternative combinatorial proof is also possible.
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These 8 points of Lp must be as below. It is easy to see that in order
that such 8 points form a 4-design, they must be the set of vertices of a
regular 8-gon. However, since tan(22.5◦) = y

x
is not a rational number,

we get a contradiction.

(−x, y) (x, y)√
p

(−x,−y) (x,−y)

(−y,−x) (y,−x)

(y, x)(−y, x)

22.5◦
.............
..............
.........
..........

Proof for A2-lattice is similar. We use (Γ0(3), χ) instead of (Γ0(4), χ4),
and at the last step, we use that tan(15◦) is not a rational number.
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More toy models.

Let d > 0 is a square free positive integer,

K = Q(
√
−d),

O = OK = the set of algebraic integers of H

=

{
Z[
√
−d], if −d ≡ 2, 3 (mod 4),

Z[1+
√
−d

2
], if −d ≡ 1 (mod 4).

L = LO = the corresponding lattice in R2

=

{
Z(1, 0) + Z(0,

√
d), if −d ≡ 2, 3 (mod 4),

Z(1, 0) + Z(1
2
,
√
d
2
), if −d ≡ 1 (mod 4).

(note that LO is Z2-lattice if d = 1, and LO is A2-lattice if

d = 3. )

Then we have the following results.



21

Theorem (Bannai-Miezaki, 2013 [2])

(i) Suppose that d ∈ {2, 7, 11, 19, 43, 67, 163} (i.e.
let K = Q(

√
−d) has class number 1, and d ̸= 1

and ̸= 3). Then any (non-empty) shell of L = LO
is not a 2-design.

(ii) Suppose that d ∈ {5, 6, 10, 13, 15, 22, 35, 37, 51,
58, 91, 115, 123, 187, 235, 267, 403, 427}
(i.e. K = Q(

√
−d) has class number 2. Then any

(non-empty) shell of L = LO is not a 2-design.
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Idea of the Proof.
We use the following known result:

K = algebraic number field over Q,
Λ = a nontrivial ideal of OK,
I(Λ) =the set of fractional ideals prime to Λ.

Let ϕ : I(Λ) −→ C∗

be a Hecke character of weight k. Then

ΨK,Λ(z) =
∑
A

ϕ(A)qN(A) =
∞∑

n=1

a(n)qn

is a cusp form in

Sk(Γ0(dK · N(Λ)), (
−dK

·
) · ωϕ),

and moreover, ΨK,Λ(z) is a Hecke eigenform, where A runs over the inte-

gral ideals prime to Λ, and N(A) is the norm of ideal A.

We apply this for the case, K = Q(
√
−d),Λ = (1) = O, k = 3.
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In the case of class number 1, we can see that ΘLO,P for an appropriate
P ∈ Harm2(R2), becomes a normalized Hecke eigenform
ΨK,Λ(z) =

∑
m≥1 a(m)qm, with all the a(m) integers.

In the case of class number 2, we can see that, if we take constants c1
and c2 appropriately, then (c1ΘLO,P + c2ΘLO′ ,P ) =

∑
m≥1 a(m)qm, (where

P ∈ Harm2(R2) and O′ is a non-principal ideal), becomes a normalized
Hecke eigenform ΨK,Λ(z) =

∑
m≥1 a(m)qm, with all the a(m) integers.

So, a similar argument as before outlined as in step 1, step 2 and step 3
works.

However, if the class number is 3 or more, it seems difficult to find a
normalized Hecke eigenform whose coefficients are all integers. (It seems
that, for d = 23, the coefficients of Hecke eigenform cannot be even in
a cyclotomic number field.) This is why we have difficulty in extending
our result beyond the class number 2 case. although we believe that the
conclusion (namely, there are no 2-designs among non-empty shells of
LOK

) always holds for d ̸= 1, ̸= 3.
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Speculations.

1 (i) For any (integral) lattice L in R2, no shell becomes a 6-design.
(Can you prove this?)
(Can you characterize the lattices in R2, which has a 4-design
among shells?)

(ii) For any (integral) lattice L in R3, no shell becomes a 4-design.
(Can you prove this?)

(iii) For any (integral) lattice L in Rn, no shell becomes an 11-design.
(Can you prove this?)

2 It is possible to prove toy models for Lehmer’s conjecture for LO
for K = Q(

√
−d) with class number 1, by another method, without

using modular forms directly, (see Bannai-Miezaki-Yudin, 2011 [3].)

3 Anyway, it would be extremely interesting to prove toy models for
lattices in higher dimensions.



Thank you very much


