Spherical designs, modular forms, and toy models for D. H. Lehmer's conjecture

Eiichi Bannai

Shanghai Jiao Tong University

Talk in Conference "Explicit Theory of Automorphic Forms"

at Tongji University, Shanghai, March 26, 2014

This talk is based on the following papers.

- 1. Eiichi Bannai and Tsuyoshi Miezaki: Toy models for D. H. Lehmer's conjecture, J. Math. Soc. Japan, 62 (2010), 687-705,
- Eiichi Bannai and Tsuyoshi Miezaki: Toy models for D. H. Lehmer's conjecture, II, in Quadratic and Higher Degree Forms, (ed. by K. Alladi, et al.), Developments in Mathematics Volume 31, 2013, pp 1–27,
- 3. E. Bannai, T. Miezaki, and V. A. Yudin: An elementary approach to toy models for D. H. Lehmer's conjecture (Russian), Izvestiya RAN: Ser. Mat.75:6 (2011) 3–16, (translation: Izv. Math. 75 (2011), 1093–1106.)

D. H. Lehmer's conjecture.

$$egin{aligned} q &= e^{\pi i z}, \quad z \in \mathbb{H}, \ \eta(z) &= q^{rac{1}{12}} \prod_{m \geq 1} (1-q^{2m}) \ &= q^{rac{1}{12}} (1-q^2-q^4+q^{10}+\cdots), \ \Delta_{24} &= \eta(z)^{24} = q^2 \prod_{m \geq 1} (1-q^{2m})^{24} \ &= q^2 - 24q^4 + 252q^6 - 1472q^8 + 4830q^{10} \ &-6048q^{12} - 16744q^{14} + \cdots \ &= \sum_{m \geq 1} au(m)q^{2m}. \end{aligned}$$

 τ is called Ramunujan's τ function.

Lehmer's Conjecture (1947): $au(m) \neq 0$, for all positive integers m.

(Compare with $|\tau(p)| < 2p^{\frac{11}{2}}$, Ramanujan-Deligne)

Lehmer's conjecture is known to be true for the following cases:

$$egin{aligned} m &< 3316799 pprox 3 \cdot 10^6 & (ext{Lehmer}, 1947) \ m &< 214928639999 pprox 2 \cdot 10^{11} & (ext{Lehmer}) \ m &< 10^{15} & (ext{Serre}, 1985) \ m &< 22689242781695999 pprox 2 \cdot 10^{16} & (ext{Jordan-Kelly}, 1999) \ m &< 22798241520242687999 pprox 2 \cdot 10^{19} \ & (ext{Bosman}, 2007, ext{arXiv:0710.1237v1}) \end{aligned}$$

- Lehmer's conjecture can be restated in terms of spherical designs (Venkov, de la Harpe, Pache, 2005(?)).
- The original Lehmer's conjecture is still difficult to prove.
- We consider similar and easier situations, and solve them.

(We call these cases toy models, and solve these cases.)

Definition (Spherical *t*-designs)

Let
$$r > 0$$
.
 $S^{n-1}(r) = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \dots + x_n^2 = r^2\}$
 $(\subset \mathbb{R}^n)$
A finite subset $X \subset S^{n-1}(r)$ is called a spherical t-design

A finite subset $X \subset S^{n-1}(r)$ is called a spherical *t*-design, if and only if

$$rac{1}{|S^{n-1}(r)|} \int_{S^{n-1}(r)} f(x) d\sigma(x) = rac{1}{|X|} \sum_{x \in X} f(x)$$

for any polynomials $f(x) = f(x_1, x_2, ..., x_n)$ of degree $\leq t$.

Let $\operatorname{Harm}_i(\mathbb{R}^n) = \text{the space of homogeneous harmonic polynomials}$ of degree *i*. Then $X \subset S^{n-1}(r)$ is a spherical *t*-design, if and only if $\sum_{x \in X} f(x) = 0$, for all homogeneous harmonic polynomials of degrees $1 \leq i \leq t$. Examples of spherical t-designs.

- t+1 vertices of a regular (t+1)-gon make a t-design in $S^1(\subset \mathbb{R}^2)$.
- 4 vertices of a regular simplex make a 2-design in $S^2(\subset \mathbb{R}^3)$.
- 8 vertices of a regular cube make a 3-design in $S^2(\subset \mathbb{R}^3)$.
- 12 vertices of a regular icosahedron make a 5-design in $S^2(\subset \mathbb{R}^3).$
- 240 roots of type E_8 make a 7-design in $S^7(\sqrt{2}) (\subset \mathbb{R}^8)$.
- 196560 min. vectors of Leech lattice make an 11-design in $S^{23}(2)(\subset \mathbb{R}^{24}).$

It is known that spherical *t*-designs on S^{n-1} exist for any n and any t (Seymour-Zaslavsky, 1984). However, explicit constructions are very difficult for large t and $n \geq 3$.

Spherical t-designs which are obtained from shells of lattices.

Let L be an integral lattice in \mathbb{R}^n . For an integer m, the shell L_m is defined by:

 $L_m=\{x\in L\mid x\cdot x=m\}\quad (\subset S^{n-1}(\sqrt{m})).$

We are interested in the properties of shells $X = L_m$ as spherical *t*-designs.

Theorem of Venkov (1984)

Let L be an even unimodular lattice in \mathbb{R}^n . (Then $n \equiv 0 \pmod{8}$.) Moreover, let L be an extremal even unimodular lattice, i.e.,

$$\min\{x\cdot x\mid x\in L, x
eq 0\}=2+2\left[rac{n}{24}
ight].$$

Then, for any $m, X = L_{2m}$ is a spherical

In particular, any shell $X = L_{2m}$ of the E_8 root lattice L is a 7-design.

Problem.

Is there any 8-design among the shells $X = L_{2m}$ of E_8 -lattice L?

(Note that a *t*-design is a *t'*-design if $t' \leq t$.)

Key Observation by Venkov:

For the E_8 -lattice L, the shell L_{2m} is an 8-design, if and only if $\tau(m) = 0$, where τ is the Ramanujan tau function.

So, D. H. Lehmer's conjecture is equivalent to the fact that there is no spherical 8-design among the shells of the E_8 -lattice L.

Theorem (Hecke, Schoeneberg, 1930's)

For an even unimodular lattice L in \mathbb{R}^n , the theta series $\Theta_L(z)$ of lattice L is defined by:

$$\Theta_L(z) = \sum_{x\in L} e^{\pi i z(x\cdot x)} = \sum_{m\geq 0}^\infty |L_{2m}| q^{2m}.$$

- -

For $P(x) \in \operatorname{Harm}_k(\mathbb{R}^n)$, the theta series $\Theta_{L,P}(z)$ with homogeneous harmonic polynomial P(x) is defined by:

$$\Theta_{L,P}(z)=\sum_{x\in L}P(x)e^{\pi i z(x\cdot x)}=\sum_{m\geq 0}^{\infty}(\sum_{x\in L_{2m}}P(x))q^{2m}.$$

Then, $\Theta_{L,P}(z)$ is a modular form of weight $\frac{n}{2} + k$ w.r.t. $SL(2,\mathbb{Z})$. Moreover, $\Theta_{L,P}(z)$ is a cusp form if $k \geq 1$. Proof of Venkov's theorem for E_8 -lattice L.

We need to show that

$$\sum_{x\in L_{2m}}P(x)=0$$

for any $P \in \text{Harm}_k(\mathbb{R}^8)$ with $1 \leq k \leq 7$. Since the result is obvious for odd k, we have only to show for k = 2, 4, 6. Now, let take such P. Then $\Theta_{L,P}(z)$ is a cusp form (w.r.t. $SL(2,\mathbb{Z})$) of weight $\frac{n}{2} + k = 4 + k = 6, 8$, or 10. Since there is no nonzero cusp forms of weight 6, 8, and 10, we have:

$$\Theta_{L,P}(z) = \sum_{m\geq 0}^\infty (\sum_{x\in L_{2m}} P(x)) q^{2m} \equiv 0.$$

Thus, $\sum_{x \in L_{2m}} P(x) = 0.$ QED.

Proof of Venkov's Key Observation.

Let *L* be the E_8 -lattice in \mathbb{R}^8 , and let $P \in \text{Harm}_8(\mathbb{R}^8)$. Then, since the dimension of cusp form of weight $12(=\frac{n}{2}+k=4+8)$ is 1, we have

$$\Theta_{L,P}(z)=\sum_{m\geq 0}^\infty(\sum_{x\in L_{2m}}P(x))q^{2m}=c(P)\Delta_{24}(z)$$

where $\Delta_{24} = \sum_{m=1}^\infty au(m) q^{2m}.$

• Let L_{2m} not be an 8-design. Then there exists a $P \in \text{Harm}_8(\mathbb{R}^8)$ such that $\sum_{x \in L_{2m}} P(x) (= c(P)\tau(m)) \neq 0$. So, $\tau(m) \neq 0$. • Suppose $\tau(m) \neq 0$. We can easily see that $L_2(= \text{ roots of}$ type E_8) is not an 8-design. Hence, there exists $P \in \text{Harm}_8(\mathbb{R}^8$ such that $\sum_{x \in L_2} P(x) \neq 0$. Hence $c(P) \neq 0$ (for this P.) Thus, $\sum_{x \in L_{2m}} P(x) = c(P)\tau(m) \neq 0$. Hence L_{2m} is not an 8-design. QED. Lehmer's attempt (1947) to try to prove $\tau(m) \neq 0$.

step 1.

(i)
$$\tau(mn) = \tau(m)\tau(n)$$
, if $(m, n) = 1$.
(ii) $\tau(p^{\alpha+1}) = \tau(p)\tau(p^{\alpha}) - p^{11}\tau(p^{\alpha-1})$, for $p = \text{prime}$.
(iii) $(|\tau(p)| < 2 \cdot p^{11}$, Ramanujan-Deligne) Put $2\cos\theta_p = \tau(p)p^{-\frac{11}{2}}$. Then
 $\sin(\alpha + 1)\theta_r$

$$au(p^{lpha}) = p^{rac{11}{2}lpha} \cdot rac{\sin(lpha+1) heta_p}{\sin heta_p}.$$

step 2. Let m be the smallest integer $(m \ge 1)$ such that $\tau(m) = 0$. Then $m = p^{\alpha}$, and moreover, m = p (i.e. $\alpha = 1$).

step 3. If $\tau(p) = 0$, p = prime, then we get many congruence conditions w.r.t. several prime powers. (So, he could get $\tau(p) \neq 0$, if p < 3316799, say. But he could not prove it for general p.) We consider toy models of the following two lattices.

- Let $L = \mathbb{Z}^2$ -lattice. Let $L_m = \{x \in L \mid x \cdot x = m\}$. Then all the non-empty shells L_m are 3-designs. (Can any of them be a 4-design?)
- Let $L = A_2$ -lattice. Let $L_m = \{x \in L \mid x \cdot x = m\}$. Then all the non-empty shells L_m are 5-designs. (Can any of them be a 6-design?)

Theorem (Bannai-Miezaki, 2010 [1])

- (i) For the \mathbb{Z}^2 -lattice L, no non-empty shell can be a 4-design.
- (ii) For the A_2 -lattice L, no non-empty shell can be a 6-design.

Sketch of Proof (for
$$\mathbb{Z}^2$$
-lattice L).
 $heta_3(z) = \sum_{m \in \mathbb{Z}} q^{m^2} = 1 + 2q + 2q^4 + 2q^9 + \cdots,$
 $\Theta_L(z) = heta_3(z)^2 = \sum_{m=0}^{\infty} r_2(m)q^m$
 $= 1 + 4q + 4q^2 + 4q^4 + 8q^5 + 4q^8 + 4q^9 + 8q^{10} + 8q^{13} + \cdots.$
(Note that $r_2(m) \neq 0$, if and only if any prime $p \equiv 3 \pmod{4}$) which divides m divides m exactly with even power.)

$$egin{aligned} \Theta_{L,P}(z) &= c_1(P) \Delta_8(z) heta_3(z)^2, \ & ext{where } \Delta_8(z) &= rac{1}{16} heta_3(z)^4 heta_4(z)^4 = q - 8q^2 + 28q^3 + \cdots, \ & ext{and } P \in ext{Harm}_4(\mathbb{R}^2) \ & ext{(Pache, 2005)} \end{aligned}$$

Now, let us set

$$\Delta_8(z) heta_3(z)^2 = \sum_{m\geq 1} a(m)q^m.$$

a(m) plays a similar role as au(m) (for E_8 -lattice), and we get:

•
$$L_m$$
 is a 4-design, if and only if $a(m) = 0$.
We have

$$\Delta_8(z) heta_3(z)^2=\sum_{m\geq 1}a(m)q^m\in S_5(G(2),\chi)$$

and

$$\Delta_8(2z) heta_3(2z)^2 = \sum_{m\geq 1} a(m)q^{2m} \in S_5(\Gamma_0(4),\chi_4),$$

the space of cusp forms of weight 5 w.r.t. $\Gamma_0(4)$ and a certain character χ_4 .

 $S_5(\Gamma_0(4), \chi_4)$, is of dimension 1, and so $\Delta_8(2z)\theta_3(2z)^2$ is a normalized Hecke eigenform. Then we have the following assertions.

step 1. (i)
$$\tau(mn) = \tau(m)\tau(n)$$
, if $(m, n) = 1$.
(ii) $\tau(p^{\alpha+1}) = \tau(p)\tau(p^{\alpha}) - \chi_4 p^4 \tau(p^{\alpha-1})$, for $p = \text{prime}$.
(iii) $(|\tau(p)| < 2 \cdot p^{-2}$.) Put $2\cos\theta_p = \tau(p)p^{-2}$. Then (for $p \equiv 1 \pmod{4}$),
 $\tau(p^{\alpha}) = p^{2\alpha} \cdot \frac{\sin(\alpha+1)\theta_p}{\sin\theta_p}$.

step 2. Let *m* be the smallest integer $(m \ge 1)$ such that $r_2(m) \ne 0$ and a(m) = 0. Then $m = p^{\alpha}$, and moreover, m = p (i.e. $\alpha = 1$) with $p \equiv 1 \pmod{4}$.

step 3. For such prime p, we get

$$r_2(p) = 8,$$
 (i.e. $L_p = 8$).

Then we can get a contradiction by considering some congruence properties.

An alternative combinatorial proof is also possible.

These 8 points of L_p must be as below. It is easy to see that in order that such 8 points form a 4-design, they must be the set of vertices of a regular 8-gon. However, since $\tan(22.5^\circ) = \frac{y}{x}$ is not a rational number, we get a contradiction.

Proof for A_2 -lattice is similar. We use $(\Gamma_0(3), \chi)$ instead of $(\Gamma_0(4), \chi_4)$, and at the last step, we use that $\tan(15^\circ)$ is not a rational number.

More toy models.

Let d > 0 is a square free positive integer, $K = \mathbb{O}(\sqrt{-d}),$ $\mathcal{O} = \mathcal{O}_K$ = the set of algebraic integers of H $= \begin{cases} \mathbb{Z}[\sqrt{-d}], & \text{if } -d \equiv 2,3 \pmod{4}, \\ \mathbb{Z}[\frac{1+\sqrt{-d}}{2}], & \text{if } -d \equiv 1 \pmod{4}. \end{cases}$ $L = L_{\mathcal{O}}$ = the corresponding lattice in \mathbb{R}^2 $= \left\{ egin{array}{ll} \mathbb{Z}(1,0) + \mathbb{Z}(0,\sqrt{d}), ext{ if } -d \equiv 2,3 \pmod{4}, \ \mathbb{Z}(1,0) + \mathbb{Z}(rac{1}{2},rac{\sqrt{d}}{2}), ext{ if } -d \equiv 1 \pmod{4}. \end{array}
ight.$ (note that $L_{\mathcal{O}}$ is \mathbb{Z}^2 -lattice if d = 1, and $L_{\mathcal{O}}$ is A_2 -lattice if

d=3.)

Then we have the following results.

Theorem (Bannai-Miezaki, 2013 [2])

(i) Suppose that $d \in \{2, 7, 11, 19, 43, 67, 163\}$ (i.e. let $K = \mathbb{Q}(\sqrt{-d})$ has class number 1, and $d \neq 1$ and $\neq 3$). Then any (non-empty) shell of $L = L_{\mathcal{O}}$ is not a 2-design.

(ii) Suppose that $d \in \{5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427\}$ (i.e. $K = \mathbb{Q}(\sqrt{-d})$ has class number 2. Then any (non-empty) shell of $L = L_{\mathcal{O}}$ is not a 2-design.

Idea of the Proof.

We use the following known result:

K = algebraic number field over \mathbb{Q} , $\Lambda =$ a nontrivial ideal of \mathcal{O}_K , $I(\Lambda) =$ the set of fractional ideals prime to Λ . Let $\phi : I(\Lambda) \longrightarrow \mathbb{C}^*$ be a Hecke character of weight k. Then

$$\Psi_{K,\Lambda}(z) = \sum_A \phi(A) q^{N(A)} = \sum_{n=1}^\infty a(n) q^n$$

is a cusp form in

$$S_k(\Gamma_0(d_K\cdot N(\Lambda)),(rac{-d_K}{\cdot})\cdot \omega_\phi),$$

and moreover, $\Psi_{K,\Lambda(z)}$ is a Hecke eigenform, where A runs over the integral ideals prime to Λ , and N(A) is the norm of ideal A.

We apply this for the case, $K = \mathbb{Q}(\sqrt{-d}), \Lambda = (1) = \mathcal{O}, k = 3.$

In the case of class number 1, we can see that $\Theta_{L_{\mathcal{O}},P}$ for an appropriate $P \in \operatorname{Harm}_2(\mathbb{R}^2)$, becomes a normalized Hecke eigenform $\Psi_{K,\Lambda}(z) = \sum_{m>1} a(m)q^m$, with all the a(m) integers.

In the case of class number 2, we can see that, if we take constants c_1 and c_2 appropriately, then $(c_1\Theta_{L_{\mathcal{O}},P} + c_2\Theta_{L_{\mathcal{O}'},P}) = \sum_{m\geq 1} a(m)q^m$, (where $P \in \operatorname{Harm}_2(\mathbb{R}^2)$ and \mathcal{O}' is a non-principal ideal), becomes a normalized Hecke eigenform $\Psi_{K,\Lambda}(z) = \sum_{m\geq 1} a(m)q^m$, with all the a(m) integers. So, a similar argument as before outlined as in step 1, step 2 and step 3 works.

However, if the class number is 3 or more, it seems difficult to find a normalized Hecke eigenform whose coefficients are all integers. (It seems that, for d = 23, the coefficients of Hecke eigenform cannot be even in a cyclotomic number field.) This is why we have difficulty in extending our result beyond the class number 2 case. although we believe that the conclusion (namely, there are no 2-designs among non-empty shells of $L_{\mathcal{O}_{\mathcal{K}}}$) always holds for $d \neq 1, \neq 3$.

Speculations.

- 1 (i) For any (integral) lattice L in R², no shell becomes a 6-design. (Can you prove this?)
 (Can you characterize the lattices in R², which has a 4-design among shells?)
 - (ii) For any (integral) lattice L in \mathbb{R}^3 , no shell becomes a 4-design. (Can you prove this?)
 - (iii) For any (integral) lattice L in \mathbb{R}^n , no shell becomes an 11-design. (Can you prove this?)
- 2 It is possible to prove toy models for Lehmer's conjecture for $L_{\mathcal{O}}$ for $K = \mathbb{Q}(\sqrt{-d})$ with class number 1, by another method, without using modular forms directly, (see Bannai-Miezaki-Yudin, 2011 [3].)
- 3 Anyway, it would be extremely interesting to prove toy models for lattices in higher dimensions.

Thank you very much