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While “classical” Eisenstein series are well-understood, there
remain many unanswered questions regarding Siegel Eisenstein
series. Perhaps most distressing is that we do not formulas for the
Fourier coefficients for a basis of Siegel Eisenstein series of level
N > 1, with arbitrary degree and character.

In this talk I will describe how to evaluate the action of the Hecke
operators on Siegel Eisenstein series of arbitrary degree, level, and
character, and discuss how these results can be used to find the
Fourier coefficients of at least some of the Siegel Eisenstein series.

Recall:

Spn(Z) =
{(A B

C D

)
∈ SL2n(Z) : A tB, C tD symmetric,

A tD − B tC = I
}
.



Subgroups of importance to us include

Γ∞ =

{(
A B
0 D

)
∈ Spn(Z)

}
,

Γ+
∞ =

{(
A B
0 D

)
∈ Spn(Z) : det A = 1

}
,

Γ(N ) = {γ ∈ Spn(Z) : γ ≡ I (N ) },

Γ0(N ) =

{(
A B
C D

)
∈ Spn(Z) : C ≡ 0 (N )

}
;

here N ∈ Z+.



It is well-known that for

γ =

(
∗ ∗
M N

)
, γ′ =

(
∗ ∗

M ′ N ′

)
∈ Spn(Z),

we have γ′ ∈ Γ+
∞γ if and only if (M ′ N ′) ∈ SLn(Z)(M N) .

Suppose (
K L
M N

)
∈ Spn(Z);

then (M N) is a coprime symmetric pair, meaning that M,N are
integral, M tN is symmetric, and for every prime p,
rankp(M N) = n, where rankp denotes the rank over Z/pZ.
On the other hand, given any coprime symmetric pair of n × n

matrices (M N), there exists some

(
K L
M N

)
∈ Spn(Z).



Defining Siegel Eisenstein series:

Take n, k ,N ∈ Z+, χ a character modulo N . For(
A B
C D

)
∈ Spn(Z),

τ ∈ Hn = {X + iY : X ,Y ∈ Rn,n
sym, Y > 0 },

set

1(τ)|
(

A B
C D

)
= det(Cτ + D)−k .



For γ ∈ Spn(Z), we want to define

Eγ(τ) =
∑

χ(δ) 1(τ)|γδ

where δ ∈ Γ0(N ) varies so that Γ+
∞γΓ0(N ) = ∪δΓ+

∞γδ (disjoint).

For γ ∈ Γ0(N ), δ∗ ∈ Γ+
∞, we have 1(τ)|δ∗γ = 1(τ)|γ.

However, this sum still may not be well-defined, so instead we
over-sum so that Eγ is as above when the above sum is
well-defined, and Eγ = 0 otherwise.

Provided k > n + 1, we get analytic functions.



With {γσ} a set of representatives for Γ∞\Spn(Z)/Γ0(N ), the
nonzero Eγσ are linearly independent, so they form a basis for the
space of Siegel Eisenstein series.

We can (and do) choose these γσ of the form

(
I 0

Mσ I

)
.

We often write Eσ for Eγσ .

Note:
Eσ(τ) =

∑
(M N)

χ(M,N) det(Mτ + N)−k

where SLn(Z)(M N) varies over SLn(Z)(Mσ I )Γ0(N ), and
χ(M,N) = χ(δ) where SLn(Z)(M N) = SLn(Z)(Mσ I )δ.



When N is square-free, each γσ is associated to a “multiplicative
partition” (N0, . . . ,Nn) of N (so N0 · · · Nn = N ), and we can
take Mσ diagonal with

Mσ ≡ 0 (N0), Mσ ≡
(

Id
0n−d

)
(Nd) for 0 < d ≤ n.

In this case Eσ 6= 0 if and only if χ2
q = 1 for all primes q|N so that

0 < rankq Mσ < n.



Theorem

Suppose N is square-free. Fix a prime q|N and a multiplicative
partition σ′ = (N ′0, . . . ,N ′n) of N/q; for 0 ≤ d ≤ n, let
σd = (N0, . . . ,Nn) where

Ni =

{
N ′i if i 6= d,

qN ′d if i = d.

Then when Eσd 6= 0, we have

Eσd |T (q)= qkd−d(d+1)/2χN/q
(
qX−1d Mσd ,X

−1
d

)
·
n−d∑
t=0

q−dt−t(t+1)/2βq(d + t, t) symχ
q (t)Eσd+t

.



Here

Xd =

(
qId

In−d

)
, symχ

q (t) =
∑
U

χq(det U),

where U runs over Zt,t
sym modulo q, and

βq(d + t, t) =
t−1∏
i=0

(qd+t−i − 1)

(qt−i − 1)

(the number of t-dimensional subspaces of a d + t-dimensional
space over Z/qZ.)



Idea of proof:

Eσd (τ)|T (q) = q−n(n+1)/2
∑

M,N,Y

χ(M,N) det(Mτ/q + MY /q + N)−k

where SLn(Z)(M N) varies over SLn(Z)(Mσd I )Γ0(N ) and
Y = Zn,n

sym, varying modulo q.

For (M N) ∈ SLn(Z)(Mσd I )Γ0(N ), we have rankq M = d .
Adjusting the representative (M N) using SLn(Z), we can assume
q divides the lower n − d rows of M.
Then

(M ′ N ′) =

(
qId

I

)
(M/q MY /q + N)

is a coprime symmetric pair with rankq M ′ = d ′ ≥ d .



Also, det(Mτ/q + MY /q + N)−k = qkd det(M ′τ + N ′)−k .

Reversing, given (M ′ N ′) ∈ SLn(Z)(Mσd′ I )Γ0(N ), we need to
count (weighted by the character χ) the equivalence classes

SLn(Z)(M N) ∈ SLn(Z)(Mσd I )Γ0(N )

so that (
qId

I

)
(M/q MY /q + N) ∈ SLn(Z)(M ′ N ′).



So

Eσd (τ)|T (q) = qkd−n(n+1)/2
∑

(M′ N′)

cd(M ′,N ′) det(M ′τ + N ′)−k ,

for some cd(M ′,N ′).

Also, Eσd |T (q) is a Siegel Eisenstein series, so

Eσd |T (q) = qkd−n(n+1)/2
∑
d ′≥d

cd(Mσd′ , I )Eσd′ .

So we only need to compute these cd(Mσd′ , I ), and then we get
the theorem. �



So
Eσd |T (q) =

∑
d ′≥d

cd(Mσd′ , I )Eσd′

and for d 6= d ′, we have

cd(Mσd , I ) 6= cd ′(Mσd′ , I ).

Therefore we can diagonalise

span{Eσ0 , . . . ,Eσn}.

This gives us the following result.



Dfn. With σ, α multiplicative partitions of N , Q|N , write
σ < α (Q) if rankq Mσ < rankq Mα for all primes q|Q, and
σ = α (Q) if rankq Mσ = rankq Mα for all primes q|Q,

Corollary

Suppose N is square-free, and σ is a multiplicative partition of N
so that Eσ 6= 0, and let q be a prime dividing N . There are
aσ,α(q) ∈ C so that

Eσ +
∑

α=σ (N/q)
α>σ (q)

aσ,α(q)Eα

is an eigenform for T (q), with eigenvalue

λσ(q) = qkd−d(d+1)/2χN/q(qXdMσ,Xd).



Corollary

Say N is square-free, and Eσ 6= 0. For Q|N and α ≥ σ (Q), set

aσ,α(Q) =
∏
q|Q

aσ,α(q).

With
Ẽσ =

∑
α≥σ (N )

aσ,α(N )Eα,

Ẽσ is an eigenform for all T (q), q|N with eigenvalue λσ(q).
If σ 6= ρ (N ), then ∃ q|N so that λσ(q) 6= λρ(q) (i.e. we have
“multiplicity-one”).



Idea of proof:

Ẽσ =
∑

α≥σ (N )

aσ,α(N )Eα

=
∑

β=σ (q)
β≥σ (N/q)

aσ,β(N/q)
∑

α≥β (q)
α=β (N/q)

aβ,α(q)Eα.

So
Ẽσ|T (q) =

∑
β

aσ,β(N/q)λβ(q)
∑
α

aβ,α(q)Eα.

We argue that λβ(q) = λσ(q) when aσ,β(N/q) 6= 0. �



Similar to the first theorem, one proves the following.

Theorem

Assume N is square-free, and fix a prime q|N . With notation as
above, suppose Eσd 6= 0. Then for 0 ≤ j ≤ n,

Eσd |Tj(q2) =
n−d∑
t=0

Aj(d , t)Eσd+t
where

Aj(d , t) = q(j−t)d−t(t+1)/2βq(d + t, t)

·
j∑

d1=0

j−d1∑
d5=0

d5∑
d8=0

q∗ χN/q(∗, ∗)

· βq(d , d1)βq(t, d5)βq(n − d − t, d1 + n − d − j − d8)

· βq(t − d5, d8) symχ
q (t − d5 − d8) symχ

q (d5, d8).

YIKES!



(Here symχ
q (b, c) is the sum of χq(det U) where U varies over

symmetric matrices modulo q, of size (b + c)× (b + c) and whose
lower c × c block is 0 modulo q.)



Corollary

With Eσ 6= 0, we have

Ẽσ|Tj(q2) = λσ,j(q2)Ẽσ

where

λσ,j(q2) = qjd
j∑

`=0

q`(2k−2d−j+`−1)χN0
(q2`)χNn

(q2(j−`))

· βq(d , `)βq(n − d , j − `).



From earlier work with J.L. Hafner, we have formulas for the
action of the Hecke operators on Fourier coefficients. So when
χ = 1, using the fact that ∑

σ

Eσ

is the Eisenstein series of level 1, with courage, one can use known
Fourier expansions for the level 1 Eisenstein series and the above
Theorems, and hope to obtain Fourier expansions for all Eσ.

(See work of Martin Dickson for a solution to this problem in
degree 2.)



Now let N be arbitrary.

Dfn. For v ,w ∈ Z with (vw ,N ) = 1, γ =

(
I 0

M I

)
∈ Spn(Z), set

(v ,w) ·M = v

(
w

I

)
M

(
w

I

)
,

(v ,w) · γ =

(
I 0

(v ,w) ·M I

)
,

(v ,w) · Eγ = E(v ,w)·γ .

Proposition

With UN = (Z/NZ)×, we have a group action of UN × UN on{
Eγ : γ =

(
I 0

M I

)
∈ Spn(Z)

}
.



Fix a set of representatives {γσ} for Γ∞\Spn(Z)/Γ0(N ) so that

γσ =

(
I 0

Mσ I

)
.

To ease notation, write Eσ for Eγσ , and E(v ,w)·σ for E(v ,w)·γσ .

Theorem

Suppose Eσ 6= 0; fix a prime p - N . Take p so that pp ≡ 1 (N ).
Then

Eσ|T (p) =
n∑

r=0

χ(pn−r )pk(n−r)−(n−r)(n−r+1)/2βp(n, r)E(p,pr )·σ.



Idea of proof:
The expression for Eσ(τ)|T (p) is more complicated when p - N .
Still, we know

Eσ|T (p) =
∑
σ′

cσ,σ′Eσ′

for some cσ,σ′ . So we show cσ,σ′ 6= 0 only if

(M(p,pr )·σ′ I ) ∈ GLn(Z)(Mσ I )Γ0(N ).

For such σ′, we replace Eσ′ by E(p,pr )·σ to make computations with
the character easier, and we proceed as before. �



Corollary. Take ψ to be a character on UN × UN .
(So ψ(v ,w) = ψ1(v)ψ2(w) for characters ψ1, ψ2 on UN .)
Set

Eσ,ψ =
∑

v ,w∈UN

ψ(v ,w)E(v ,w)·σ.

Note that by orthogonality of characters, we have

span{Eσ}σ = span{Eσ,ψ}σ,ψ.

Then for prime p - N ,

Eσ,ψ|T (p) = λσ,ψ(p)Eσ,ψ

where

λσ,ψ(p) = ψ1(p)ψ2(pn) ·
n∏

i=1

(ψ2χ(p)pk−i + 1).



Idea of proof:

Eσ,ψ|T (p) =
∑
v ,w ,r

ψ(v ,w)χ(pn−r )p∗βp(n, r)E(pv ,prw)·σ.

Making the change of variables v 7→ pv , w 7→ prw , we get

Eσ,ψ|T (p) = ψ1(p)χ(pn)pkn−n(n+1)/2S(n, k)Eσ,ψ

where

S(n, k) =
n∑

r=0

ψ2χ(pr )p−kr+r(r+1)/2βp(n, r).

Using that βp(n, r) = prβp(n − 1, r) + βp(n − 1, r − 1), we find
that

S(n, k) = (ψ2χ(p)p1−k + 1)S(n − 1, k − 1)

=
n∏

i=1

(ψ2χ(p)pi−k + 1).

Then we collect and rearrange terms. �



Similar to the previous theorem, we have:

Theorem

With p a prime not dividing N ,

Eσ|Tj(p2) = βp(n, j)
∑

r+s≤j
χ(pj−r+s)pk(j−r+s)−(j−r)(n+1)

· βp(j , r)βp(j − r , s) symp(j − r − s)E(1,ps−r )·σ

(where symp(t) is the number of invertible symmetric t × t
matrices modulo p).
Consequently Eσ,ψ is an eigenform for Tj(p2).



Taking a different set of generators T (p), T ′j (p2) for the local
Hecke algebra, we get that

Eσ,ψ|T ′j (p2) = λ′j ;σ,ψ(p2)Eσ,ψ

where

λ′j ;σ,ψ(p2) = βp(n, j)p(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(ψ2χ(p)pk−i + 1).



Hecke operators on half-integral weight Siegel Eisenstein
series: work in progress

We can build Siegel Eisenstein series of weight m/2, m odd, by
first defining

1(τ)|γ =

(
θ(γτ)

θ(τ)

)−m
where γ ∈ Γ0(4) and

θ(τ) =
∑

U∈Z1,n

exp(2πiTr( tUUτ)).



Then with γ =

(
A B
C D

)
∈ Γ0(4),

θ(γτ)

θ(τ)
= det(Cτ + D)1/2

G−C (D)

(det D)1/2

where

G−C (D) =
∑

U∈Z1,n/Z1,nD

exp(2πiTr(− tUUD−1C )).

Using the theta series transformation, we get identities such as

GC (D)

(det D)1/2
=
GC (D + CY )

(det D + CY )1/2

for symmetric Y ∈ Zn,n. Then we can modify the preceding
arguments to analyse Hecke operators on these Siegel theta series.

THANK YOU!


