Lifts from two elliptic modular forms to Siegel modular forms of half-integral weight of even degrees

Shuichi Hayashida

Joetsu University of Education

March 28, 2014
Explicit Theory of Automorphic Forms
at Tongji University

Let k be an even integer. Then there exists a lift

$$
\begin{array}{lllll}
S_{k-\frac{1}{2}}^{+} & \times & S_{k-n-\frac{1}{2}}^{+} & \rightarrow & S_{k-\frac{1}{2}}^{+(2 n)} \\
\Psi^{*} & U & & ש \\
(f & , & g) & \mapsto & \mathcal{F}_{f, g}
\end{array}
$$

Here $S_{k-\frac{1}{2}}^{+}$is the Kohnen plus space and $S_{k-\frac{1}{2}}^{+(2 n)}$ is the generalized plus space of degree $2 n$.
(1) Plus space for Jacobi forms
(2) Lifts
(3) Generalized Maass relation

$$
\begin{aligned}
\mathfrak{H}_{n} & :=\left\{\tau \in M_{n}(\mathbb{C}) \mid \tau={ }^{t} \tau, \operatorname{Im}(\tau)>0\right\}, \\
\operatorname{Sp}(n, K) & :=\left\{M \in \mathrm{GL}(2 n, K) \left\lvert\, M\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right)^{t} M=\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right)\right.\right\},
\end{aligned}
$$

Sym n_{n}^{*} : the set of all half-integral symmetric matrices with size n,

$$
e(*):=\exp (2 \pi i \operatorname{tr}(*)),
$$

$M_{k}^{n}:=\{$ Siegel modular form of weight k of degree $n\}$,
$S_{k}^{n}:=\{$ Siegel cusp form of weight k of degree $n\}$.

$$
\begin{gathered}
\Gamma_{n}:=\operatorname{Sp}(n, \mathbb{Z}) \\
\Gamma_{n, r}^{J}:=\left\{\left(\begin{array}{cccc}
* & 0 & * & * \\
* & 1_{r} & * & * \\
* & 0 & * & * \\
0 & 0 & 0 & 1_{r}
\end{array}\right) \in \Gamma_{n+r}\right\} .
\end{gathered}
$$

(1) Plus space for Jacobi forms
(2) Lifts
(3) Generalized Maass relation

Let $\mathcal{M} \in$ Sym $_{r}^{*}$.

Definition (Jacobi forms of matrix index)
Let ϕ be a holomorphic function on $\mathfrak{H}_{n} \times M_{n, r}(\mathbb{C})$. Such ϕ is called a Jacobi form of weight k of index \mathcal{M} of degree n, if

$$
\left.(\phi(\tau, z) e(\mathcal{M} \omega))\right|_{k} \gamma=\phi(\tau, z) e(\mathcal{M} \omega)
$$

for any $\gamma \in \Gamma_{n, r}^{J}$ and for any $\left(\begin{array}{cc}\tau & z \\ t_{z} & \omega\end{array}\right) \in \mathfrak{H}_{n+r}$.
If $n=1$, then ϕ is required to satisfy the cusp condition.

$$
J_{k, \mathcal{M}}^{(n)}:=\{\text { Jacobi form of weight } k \text {, index } \mathcal{M} \text {, degree } n\}
$$

Fourier-Jacobi expansion

Let $F \in M_{k}^{n+r}$. The expansion

$$
F\left(\left(\begin{array}{ll}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)=\sum_{\mathcal{M} \in S_{y m_{r}^{*}}^{*}} \phi_{\mathcal{M}}(\tau, z) e(\mathcal{M} \omega)
$$

is called the Fourier-Jacobi expansion of F.

- We remark $\phi_{\mathcal{M}} \in J_{k, \mathcal{M}}^{(n)}$
- For Siegel modular forms of half-integral weight we can also consider the Fourier-Jacobi expansion.

Let $F \in M_{k}^{n+r}$. The expansion

$$
F\left(\left(\begin{array}{ll}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)=\sum_{\mathcal{M} \in S_{y m_{r}^{*}}^{*}} \phi_{\mathcal{M}}(\tau, z) e(\mathcal{M} \omega)
$$

is called the Fourier-Jacobi expansion of F.

- We remark $\phi_{\mathcal{M}} \in J_{k, \mathcal{M}}^{(n)}$
- For Siegel modular forms of half-integral weight we can also consider the Fourier-Jacobi expansion.
- We put

$$
\theta(\tau):=\sum_{p \in \mathbb{Z}^{n}} e\left(p \tau^{t} p\right) \quad\left(\tau \in \mathfrak{H}_{n}\right)
$$

- A holomorphic function F on \mathfrak{H}_{n} is called a Siegel modular form of weight $k-\frac{1}{2}$ of degree n, if F satisfies

$$
F(M \cdot \tau)=\left(\frac{\theta(M \cdot \tau)}{\theta(\tau)}\right)^{2 k-1} F(\tau) \quad \text { for any } M \in \Gamma_{0}^{(n)}(4)
$$

(+ cusp condition for $n=1$.)

- $J_{k-\frac{1}{2}, m}^{(n)}:=\left\{\right.$ Jacobi forms of weight $k-\frac{1}{2}$ of index $\left.m\right\}$.

Generalized Plus space

The generalized plus space is defined by

$$
\begin{aligned}
& M_{k-\frac{1}{2}}^{+(n)}:= \\
& \left\{\left.f \in M_{k-\frac{1}{2}}\left(\Gamma_{0}^{(n)}(4)\right) \right\rvert\, A_{f}(N)=0 \text { unless } N \equiv(-1)^{k+1} \lambda^{t} \lambda \bmod 4\right. \\
& \left.\quad \text { with some } \lambda \in \mathbb{Z}^{n}\right\}
\end{aligned}
$$

where $A_{f}(N)$ is the N-th Fourier coefficient of f, i.e.

$$
f(\tau)=\sum_{N \in S y m_{n}^{*}} A_{f}(N) e(N \tau)
$$

Generalized Plus space

The generalized plus space is defined by

$$
\begin{aligned}
& M_{k-\frac{1}{2}}^{+(n)}:= \\
& \left\{\left.f \in M_{k-\frac{1}{2}}\left(\Gamma_{0}^{(n)}(4)\right) \right\rvert\, A_{f}(N)=0 \text { unless } N \equiv(-1)^{k+1} \lambda^{t} \lambda \bmod 4\right. \\
& \left.\quad \text { with some } \lambda \in \mathbb{Z}^{n}\right\}
\end{aligned}
$$

where $A_{f}(N)$ is the N-th Fourier coefficient of f, i.e.

$$
f(\tau)=\sum_{N \in S y m_{n}^{*}} A_{f}(N) e(N \tau)
$$

- $M_{k-\frac{1}{2}}^{+(1)}$ is the Kohnen plus space.

Generalized Plus space and the isomorphism

Theorem (Eichler-Zagier $(n=1)$, Ibukiyama $(n>1)$)
If k is an even integer, then

$$
M_{k-\frac{1}{2}}^{+(n)} \cong J_{k, 1}^{(n)}
$$

as Hecke algebra module
Several generalizations of this theorem are known
(skew-holomorphic Jacobi forms: Skoruppa, Arakawa, H.
with character: Ibukiyama-H.
vector valued: Kimura, Ibukiyama
etc.)

Theorem (Eichler-Zagier $(n=1)$, Ibukiyama $(n>1)$)

If k is an even integer, then

$$
M_{k-\frac{1}{2}}^{+(n)} \cong J_{k, 1}^{(n)}
$$

as Hecke algebra module
Several generalizations of this theorem are known (skew-holomorphic Jacobi forms: Skoruppa, Arakawa, H. with character: Ibukiyama-H.
vector valued: Kimura, Ibukiyama etc.)

Let $\phi \in J_{k-\frac{1}{2}, m}^{(n)}$ be a Jacobi form of weight $k-\frac{1}{2}$ of index $m(\in \mathbb{Z})$.
Fourier expansion of $\phi(\tau, z) e(m \omega)$:

Definition (Plus space for Jacobi forms)

$A(M)=0$ unless $M \equiv(-1)^{k+1} \lambda^{t} \lambda \quad \bmod 4$ with some $\lambda \in \mathbb{Z}^{n+1}$

Let $\phi \in J_{k-\frac{1}{2}, m}^{(n)}$ be a Jacobi form of weight $k-\frac{1}{2}$ of index $m(\in \mathbb{Z})$.
Fourier expansion of $\phi(\tau, z) e(m \omega)$:

$$
\phi(\tau, z) e(m \omega)=\sum_{\substack{N \in S y m_{n}^{*}, R \in \mathbb{Z}^{n} \\
4 N m-R^{t} R \geq 0}} A\left(\left(\begin{array}{cc}
N & \frac{1}{2} R \\
\frac{1}{2}^{t} R & m
\end{array}\right)\right) e\left(\left(\begin{array}{cc}
N & \frac{1}{2} R \\
\frac{1}{2}^{t} R & m
\end{array}\right)\left(\begin{array}{cc}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)
$$

Definition (Plus space for Jacobi forms)

Let $\phi \in J_{k-\frac{1}{2}, m}^{(n)}$ be a Jacobi form of weight $k-\frac{1}{2}$ of index $m(\in \mathbb{Z})$.
Fourier expansion of $\phi(\tau, z) e(m \omega)$:

$$
\phi(\tau, z) e(m \omega)=\sum_{\substack{N \in S y m_{n}^{*}, R \in \mathbb{Z}^{n} \\
4 N m-R^{t} R \geq 0}} A\left(\left(\begin{array}{cc}
N & \frac{1}{2} R \\
\frac{1}{2}^{t} R & m
\end{array}\right)\right) e\left(\left(\begin{array}{cc}
N & \frac{1}{2} R \\
\frac{1}{2}^{t} R & m
\end{array}\right)\left(\begin{array}{cc}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)
$$

Definition (Plus space for Jacobi forms)

$\phi \in J_{k-\frac{1}{2}, m}^{+(n)}$ if and only if
$A(M)=0$ unless $M \equiv(-1)^{k+1} \lambda^{t} \lambda \quad \bmod 4$ with some $\lambda \in \mathbb{Z}^{n+1}$

Let $\mathcal{M}=\left(\begin{array}{cc}I & \frac{1}{2} r \\ \frac{1}{2} r & 1\end{array}\right)$ be a half-integral symmetric matrix of size 2 .
We put

$$
m=\operatorname{det} 2 \mathcal{M}
$$

Proposition

If k is an even integer, then

$$
J_{k-\frac{1}{2}, m}^{+(n)} \cong J_{k, \mathcal{M}}^{(n)}
$$

as Hecke algebra modules.

$$
J_{k-\frac{1}{2}, m}^{+(n)} \subset J_{k-\frac{1}{2}, m}^{(n)}: \text { plus space for Jacobi forms }
$$

Table of Contents
(1) Plus space for Jacobi forms
(2) Lifts
(3) Generalized Maass relation

Theorem

Let k be an even integer. Let $f \in S_{k-\frac{1}{2}}^{+}$and $g \in S_{k-n-\frac{1}{2}}^{+}$be Hecke eigenforms in the Kohnen plus-spaces. ${ }^{2}$ Then there exists $\mathcal{F}_{f, g} \in S_{k-\frac{1}{2}}^{+(2 n)}$. Under the assumption $\mathcal{F}_{f, g} \not \equiv 0$, the form $\mathcal{F}_{f, g}$ is a Hecke eigenform with the (modified) Zhuravlev L-function

$$
L\left(s, \mathcal{F}_{f, g}\right)=L(s, f) \prod_{i=1}^{2 n-1} L(s-i, g)
$$

Here the L-function is defined by

$$
L(s, \mathcal{F}):=\prod_{p} \prod_{i=1}^{n}\left\{\left(1-\alpha_{i, p} p^{k-\frac{3}{2}-s}\right)\left(1-\alpha_{i, p}^{-1} p^{k-\frac{3}{2}-s}\right)\right\}^{-1}
$$

for Hecke eigenform $\mathcal{F} \in M_{k-\frac{1}{2}}^{+(n)} .\left(\left\{\alpha_{i, p}^{ \pm 1}\right\}_{i}\right.$ is the p-parameter of $\left.\mathcal{F}.\right)$

The construction of the lift $\mathcal{F}_{f, g}$

$$
(f, g) \in S_{k-\frac{1}{2}}^{+} \otimes S_{k-n-\frac{1}{2}}^{+} .
$$

$$
I(g) \in S_{k}^{2 n+2}
$$

For $\tau \in \mathfrak{H}_{2 n}$ we set

$$
\mathcal{F}_{f, g}(\tau):=\frac{1}{6} \int_{\Gamma_{0}(4) \backslash \mathfrak{F}_{1}} G\left(\left(\begin{array}{cc}
\tau & 0 \\
0 & \omega
\end{array}\right)\right) \overline{f(\omega)} \operatorname{lm}(\omega)^{k-\frac{5}{2}} d \omega \in S_{k-\frac{1}{2}}^{+(2 n)} .
$$

The construction of the lift $\mathcal{F}_{f, g}$

$$
(f, g) \in S_{k-\frac{1}{2}}^{+} \otimes S_{k-n-\frac{1}{2}}^{+} .
$$

$$
I(g) \in S_{k}^{2 n+2}
$$

For $\tau \in \mathfrak{H}_{2 n}$ we set

$$
\mathcal{F}_{f, g}(\tau):=\frac{1}{6} \int_{\Gamma_{0}(4) \backslash \mathfrak{H}_{1}} G\left(\left(\begin{array}{cc}
\tau & 0 \\
0 & \omega
\end{array}\right)\right) \overline{f(\omega)} \operatorname{Im}(\omega)^{k-\frac{5}{2}} d \omega \in S_{k-\frac{1}{2}}^{+(2 n)}
$$

The construction of the lift $\mathcal{F}_{f, g}$

$$
(f, g) \in S_{k-\frac{1}{2}}^{+} \otimes S_{k-n-\frac{1}{2}}^{+} .
$$

$$
I(g) \in S_{k}^{2 n+2}
$$

For $\tau \in \mathfrak{H}_{2 n}$ we set

$$
\mathcal{F}_{f, g}(\tau):=\frac{1}{6} \int_{\Gamma_{0}(4) \backslash \mathfrak{H}_{1}} G\left(\left(\begin{array}{cc}
\tau & 0 \\
0 & \omega
\end{array}\right)\right) \overline{f(\omega)} \operatorname{Im}(\omega)^{k-\frac{5}{2}} d \omega \in S_{k-\frac{1}{2}}^{+(2 n)}
$$

(1) Plus space for Jacobi forms

(2) Lifts
(3) Generalized Maass relation

Let

$$
F\left(\left(\begin{array}{cc}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)=\sum_{m \in \mathbb{Z}} \phi_{m}(\tau, z) e(m \omega) \in M_{k}^{2}
$$

be a Fourier-Jacobi expansion.
The Maass relation is a relation among Fourier-Jacobi coefficients

$$
\phi_{m}=\phi_{1} \mid V_{m}
$$

for any non-negative integer m. Here V_{m} is an index-shift map

$$
V_{m}: J_{k, t}^{(1)} \rightarrow J_{k, t m}^{(1)}
$$

- We have also $\phi_{m} \left\lvert\, V_{p}=\phi_{m p}+p^{k-1} \phi_{\frac{m}{p}}\right.$ for prime p.

Let

$$
F\left(\left(\begin{array}{cc}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)=\sum_{m \in \mathbb{Z}} \phi_{m}(\tau, z) e(m \omega) \in M_{k}^{2}
$$

be a Fourier-Jacobi expansion.
The Maass relation is a relation among Fourier-Jacobi coefficients

$$
\phi_{m}=\phi_{1} \mid V_{m}
$$

for any non-negative integer m. Here V_{m} is an index-shift map

$$
V_{m}: J_{k, t}^{(1)} \rightarrow J_{k, t m}^{(1)} .
$$

- We have also $\phi_{m} \left\lvert\, V_{p}=\phi_{m p}+p^{k-1} \phi_{\frac{m}{p}}\right.$ for prime p.

The map V_{m} is defined by

$$
\begin{aligned}
& \left(\phi \mid V_{m}\right)(\tau, z) \\
: & m^{k-1} \sum_{\left(\begin{array}{cc}
a & b \\
c & d \\
a d-b c=m \\
\text { ad }
\end{array}\right.}(c \tau+d)^{-k} e\left(m l \frac{c z^{2}}{c \tau+d}\right) \\
& \times \phi\left(\frac{a \tau+b}{c \tau+d}, \frac{m z}{c \tau+d}\right)
\end{aligned}
$$

for $\phi \in J_{k, t}^{(1)},(\tau, z) \in \mathfrak{H}_{1} \times \mathbb{C}$. Then $\phi \mid V_{m} \in J_{k, t m}^{(1)}$.

The map V_{m} is defined by

$$
\begin{aligned}
& \left(\phi \mid V_{m}\right)(\tau, z) \\
: & m^{k-1} \sum_{\left(\begin{array}{cc}
a & b \\
c & d \\
a d-b c=m \\
\text { ad }
\end{array}\right.}(c \tau+d)^{-k} e\left(m l \frac{c z^{2}}{c \tau+d}\right) \\
& \times \phi\left(\frac{a \tau+b}{c \tau+d}, \frac{m z}{c \tau+d}\right)
\end{aligned}
$$

for $\phi \in J_{k, t}^{(1)},(\tau, z) \in \mathfrak{H}_{1} \times \mathbb{C}$. Then $\phi \mid V_{m} \in J_{k, t m}^{(1)}$.

- $\phi(\tau, 0) \in M_{k}^{1}$
- $\left(\phi \mid V_{m}\right)(\tau, 0)=\phi(\tau, 0) \mid T(m)$ with the usual Hecke operator $T(m)$ which acts on the space of elliptic modular forms.

For any prime p and for $i(0 \leq i \leq n)$ we can define a map

$$
\tilde{V}_{i, n-i}\left(p^{2}\right): J_{k-\frac{1}{2}, m}^{+(n)} \rightarrow J_{k-\frac{1}{2}, m p^{2}}^{+(n)}
$$

- $\phi(\tau, 0) \in M_{k-\frac{1}{2}}^{+(n)}$ for any $\phi \in J_{k-\frac{1}{2}, m}^{+(n)}$.
- $\left(\phi \mid \tilde{V}_{i, n-i}\left(p^{2}\right)\right)(\tau, 0)=\phi(\tau, 0) \mid \tilde{T}_{i, n-i}\left(p^{2}\right)$ with the Hecke

For any prime p and for $i(0 \leq i \leq n)$ we can define a map

$$
\tilde{V}_{i, n-i}\left(p^{2}\right): J_{k-\frac{1}{2}, m}^{+(n)} \rightarrow J_{k-\frac{1}{2}, m p^{2}}^{+(n)}
$$

- $\phi(\tau, 0) \in M_{k-\frac{1}{2}}^{+(n)}$ for any $\phi \in J_{k-\frac{1}{2}, m}^{+(n)}$.
- $\left(\phi \mid \tilde{V}_{i, n-i}\left(p^{2}\right)\right)(\tau, 0)=\phi(\tau, 0) \mid \tilde{T}_{i, n-i}\left(p^{2}\right)$ with the Hecke operator $\tilde{T}_{i, n-i}\left(p^{2}\right): M_{k-\frac{1}{2}}^{+(n)} \rightarrow M_{k-\frac{1}{2}}^{+(n)}$.

Index-shift maps and the isomorphism

Proposition

We have the commutative diagram

$$
\begin{array}{cc}
J_{k, \mathcal{M}}^{(n)} & \longrightarrow \\
V, U \downarrow \\
J_{k-\frac{1}{2}, m}^{(n)+} \\
J_{k, \mathcal{M}}^{(n)}\left[\left(\begin{array}{cc}
p & 1
\end{array}\right)\right]
\end{array} \longrightarrow J_{k-\frac{1}{2}, m p^{2} .}^{(n)+}
$$

where V, U, \tilde{V} and \tilde{U} are index-shift maps.

Generalized Maass relation

Let

$$
G\left(\left(\begin{array}{cc}
\tau & z \\
t_{z} & \omega
\end{array}\right)\right)=\sum_{m \in \mathbb{Z}} \phi_{m}(\tau, z) e(m \omega)
$$

be the Fourier-Jacobi expansion of $G\left(\in S_{k-\frac{1}{2}}^{+(2 n+1)}\right)$

Theorem (Generalized Maass relation)

$$
\begin{aligned}
& \phi_{m} \mid\left(\tilde{V}_{0,2 n}\left(p^{2}\right), \tilde{V}_{1,2 n-1}\left(p^{2}\right), \ldots, \tilde{V}_{2 n, 0}\left(p^{2}\right)\right) \\
= & \left(\phi_{\frac{m}{p^{2}}}\left|U_{p^{2}}, \phi_{m}\right| U_{p}, \phi_{m p^{2}}\right) A\left(\beta_{p}\right)
\end{aligned}
$$

for any prime p. (The both sides are vectors of forms.)
$A\left(\beta_{p}\right)$ is a certain $3 \times(2 n+1)$ matrix which depends on the choice of $g \in S_{k-n-\frac{1}{2}}^{+}$. $\left(\left\{\beta_{p}^{ \pm 1}\right\}_{p}\right.$ is the Satake parameter of g.)

$$
\begin{aligned}
& \left(\phi_{m} \mid \tilde{V}_{i, 2 n-i}\left(p^{2}\right)\right)(\tau, 0)=\phi_{m}(\tau, 0) \mid \tilde{T}_{i, 2 n-i}\left(p^{2}\right) \\
& \left.G\left(\left(\begin{array}{c}
\tau \\
0 \\
0
\end{array}\right)\right) \right\rvert\, \tilde{T}_{i, 2 n-i}\left(p^{2}\right) \\
= & \sum_{m}\left(\phi_{m}(\tau, 0) \mid \tilde{T}_{i, 2 n-i}\left(p^{2}\right)\right) e(m \omega) \\
= & \sum_{m}\left(\phi_{m} \mid \tilde{V}_{i, 2 n-i}\left(p^{2}\right)\right)(\tau, 0) e(m \omega) \\
= & \sum_{m}\left(\text { lin. comb. of } \phi_{\frac{m}{p^{2}}}(\tau, 0), \phi_{m}(\tau, 0), \phi_{m p^{2}}(\tau, 0)\right) e(m \omega) \\
= & \text { lin. comb. of } G\left(\left(\begin{array}{c}
\tau \\
0 \\
0
\end{array}\right)\right) \text { and }\left.G\left(\left(\begin{array}{cc}
\tau \\
0 & 0
\end{array}\right)\right)\right|_{\omega} T^{+}\left(p^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}_{f, g} \mid \tilde{T}_{i, 2 n-i}\left(p^{2}\right) \\
& =\frac{1}{6} \int_{\Gamma_{0}(4) \backslash \mathfrak{F}_{1}}\left(\left.G\left(\left(\begin{array}{cc}
\tau & 0 \\
0
\end{array}\right)\right) \right\rvert\, \tilde{T}_{i, 2 n-i}\left(p^{2}\right)\right) \overline{f(\omega)} \operatorname{lm}(\omega)^{k-\frac{5}{2}} d \omega=c \mathcal{F}_{f, g} .
\end{aligned}
$$

- Consider $J_{k, \mathcal{M}}^{(n)}$ instead of $J_{k-\frac{1}{2}, m}^{+(n)}\left(\right.$ Here $\mathcal{M}=\left(\begin{array}{cc}1 & \frac{1}{2} r \\ \frac{1}{2} r & 1\end{array}\right)$).
- Introduce V-map for $J_{k, \mathcal{M}}^{(n)} . V_{i, n-i}\left(p^{2}\right): J_{k, \mathcal{M}}^{(n)} \rightarrow J_{k, \mathcal{M}}^{(n)}\left[\binom{p}{1}\right]$
- Show a generalized Maass relation for Siegel-Eisenstein series. (Fourier-Jacobi expansion of S-E series with respect to \mathcal{M}.) Ikeda lifts inherit some properties of Siegel-Eisenstein series.
- Use the relation among Fourier-Jacobi coefficients of Siegel-Eisenstein series and Jacobi-Eisenstein series (w.r.t. index \mathcal{M}) (It follows from Boecherer's result.)
- Use "Zharvkovskaya's theorem" for Jacobi forms of index \mathcal{M}. (This is a commutative relation between Siegel ϕ-operator on Jacobi forms and V-maps. (Generalization of Zharkovskaya and Krieg's results.))

Siegel-Eisenstein series

Ikeda lift

Zharkovskaya's Theorem for Jacobi forms

Proposition

Let $\mathcal{M}=\left(\begin{array}{cc}1 & \frac{1}{2} r \\ \frac{1}{2} r & 1\end{array}\right)$ and $\Phi: J_{k, \mathcal{M}}^{(n)} \rightarrow J_{k, \mathcal{M}}^{(n-1)}$.
For any Jacobi form $\phi \in J_{k, \mathcal{M}}^{(n)}$ and for any prime p, we have

$$
\Phi\left(\phi \mid V_{i, n-i}\left(p^{2}\right)\right)=\Phi(\phi) \mid V_{i, n-i}\left(p^{2}\right)^{*}
$$

where $V_{i, n-i}\left(p^{2}\right)^{*}$ is a map $V_{i, n-i}\left(p^{2}\right)^{*}: J_{k, \mathcal{M}}^{(n-1)} \rightarrow J_{k, \mathcal{M}}^{(n-1)}\left[\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right)\right]$ given by

$$
\begin{aligned}
V_{i, n-i}\left(p^{2}\right)^{*}= & p^{i+2-k} V_{i, n-i-1}\left(p^{2}\right) \\
& +p\left(1+p^{2 n+1-2 k}\right) V_{i-1, n-i}\left(p^{2}\right) \\
& +\left(p^{2 n-2 i+2}-1\right) p^{i-k} V_{i-2, n-i+1}\left(p^{2}\right) .
\end{aligned}
$$

Thank you!

