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Theorem (Fermat)

An odd prime p is expressible as p = x2 + y2 with x and y
integers, if and only if p ≡ 1 mod 4.

By this theorem, one easily proves that a number N can be
represented as a sum of two squares precisely when N is of the form

n2
∏

pi

where pi is 2 or a prime congruent to 1 mod 4.
Albert Girard first made the observation in 1632. Fermat
announced this theorem in a letter to Marin Mersenne dated
December 25, 1640; for this reason this theorem is sometimes
called Fermat’s Christmas Theorem.



Representation number of two squares

Let
n = 2a0m2pa1

1 · · · p
ak
k > 1,

where the prime divisor of m is congruent to 3 modulo 4 and pi is
is congruent to 1 modulo 4. Then the number of ways to represent
n as the sum of two squares is given by

r2(n) = 4(a1 + 1) · · · (ak + 1).

In the following context, we will use rt(n) for the number of ways
to represent n as the sum of t squares.



Legendre’s three-square theorem

Theorem
Any natural number that is not of the form

n = 4a(8b + 7)

for integers a and b can be represented as the sum of three integer
squares:

n = x2 + y2 + z2.

This theorem was stated by Adrien-Marie Legendre in 1798. His
proof was incomplete, leaving a gap which was later filled by Carl
Friedrich Gauss.



Representation number of three squares

Gauss proved that if n is square free and n > 4, then

r3(n) =



24h(−n), if n ≡ 3 mod 8;

12h(−4n), if n ≡ 1, 2, 5, 6 mod 8;

0, if n ≡ 7 mod 8,

where h(d) is the class number of the unique order of Q(
√

d) with
discriminant d .



Lagrange’s four-square theorem

Theorem
Any natural number can be represented as the sum of four integer
squares

n = a20 + a21 + a22 + a23

where the four numbers a0, a1, a2, a3 are integers.

The theorem appears in the Arithmetica of Diophantus, translated
into Latin by Bachet in 1621 but was not proven until 1770 by
Lagrange.



Representation number of four squares
The number of ways to represent n as the sum of four squares is
eight times the sum of the divisors of n if n is odd and 24 times
the sum of the odd divisors of n if n is even, i.e.

r4(n) =


8
∑
m|n

m, if n is odd;

24
∑
m|n

m odd

m, if n is even.

Equivalently, it is eight times the sum of all its divisors which are
not divisible by 4, i.e.

r4(n) = 8
∑

m : 4-m|n

m.

In particular, for a prime number p we have the explicit formula

r4(p) = 8(p + 1).



Representation number of five squares
The number of ways to represent n as the sum of five squares is

r5(n) =



−80
∑(n−1)/2

j=1

(
j

n

)
j , if n ≡ 1 mod 8, n 6= 1;

−80
∑(n−1)/2

j=1 (−1)j
(

j

n

)
j , if n ≡ 3 mod 8;

−112
∑(n−1)/2

j=1 (−1)j
(

j

n

)
j , if n ≡ 5 mod 8;

80
∑(n−1)/2

j=1 (−1)j
(

j

n

)
j , if n ≡ 7 mod 8;

r5(2n) = 80n
n−1∑

j=1, j≡1 mod 4

(
2

j

)(
j

m

)
+ 80(−1)(n−1)/2

n−1∑
j=1, j≡3 mod 4

(
2

j

)(
j

m

)
(m − j) for odd n > 1.



Representation number of six squares

The number of ways to represent n as the sum of six squares is

r6(n) = 16
∑
d |n

χ(n/d)d2 − 4
∑
d |n

χ(d)d2

where

χ(d) =


1, if d ≡ 1 mod 4;

−1, if d ≡ −1 mod 4

0, if d ≡ 0 mod 2.



Hurwitz Theorem

Theorem (Hurwitz)

Let n be a positive integer with prime factorization

n = 2e2
∏

p odd

pep . (1)

Then

r3(n2) = 6
∏

p odd

(
pep+1 − 1

p − 1
−
(
−1

p

)
pep − 1

p − 1

)
,

where

(
a

p

)
is the Legendre symbol.



Cooper and Lam

Recently Cooper and Lam established analogues of Hurwitz’s
formula for the cases

(a, b, c) = (1, 1, 2), (1, 1, 3), (1, 2, 2) and (1, 3, 3).

For example:



Cooper and Lam Theorem

Theorem (Cooper and Lam)

Let n be a positive integer with prime factorization

n = 2e2
∏

p odd

pep . (2)

Then the number of (x , y , z) ∈ Z3 such that

n2 = x2 + 3y2 + 3z2

is given by

2(2e2+2 − 3)
∏
p ≥5

(
pep+1 − 1

p − 1
−
(
−1

p

)
pep − 1

p − 1

)
,

where

(
a

p

)
is the Legendre symbol.



Notations

Let Q(x , y , z) be a positive definite ternary quadratic form with
integer coefficients. We denote by RQ(n) the representation
number of the integer n by Q, that is, the number of integral
solutions (x , y , z) of the equation Q(x , y , z) = n. In particular, if

Q(x , y , z) = ax2 + by2 + cz2 + ryz + szx + txy ,

we write R(a,b,c,r ,s,t)(n) for RQ(n). If r = s = t = 0, we will also
write R(a,b,c,r ,s,t)(n) simply as R(a,b,c)(n). In particular, we write

S(n) = R(1,1,1,0,0,0)(n)

for short.



Conjecture (Cooper and Lam 1)

Let n be a positive integer with prime factorization given by (1.4).
Then when (b, c) takes the values in Table 1, the representation
number S(1,b,c)(n2) is a product of two integers:

S(1,b,c)(n2) = G (b, c, n) · H(b, c , n),

where

H(b, c , n) =
∏

p - 2bc

(
pep+1 − 1

p − 1
−
(
−bc

p

)
pep − 1

p − 1

)
,

and
G (b, c , n) =

∏
p | 2bc

g(b, c , p, ep),

in which g(b, c , p, ep) has to be determined on an individual and
case-by-case basis.



Table 1

Data for Cooper and Lam 1

b c

1 1, 2, 3, 4, 5, 6, 8, 9, 12, 21, 24

2 2, 3, 4, 5, 6, 8, 10, 13, 16, 22, 40, 70

3 3, 4, 5, 6, 9, 10, 12, 18, 21, 30, 45

4 4, 6, 8, 12, 24

5 5, 8, 10, 13, 25, 40

6 6, 9, 16, 18, 24

8 8, 10, 13, 16, 40

9 9, 12, 21, 24

10 30

12 12

16 24

21 21

24 24



Hecke operator

Recall that Ramanujan’s theta function, denoted by ϕ(q), is
defined to be

ϕ(q) =
∞∑

j=−∞
qj2 , where q = e2πiz .

Let b and c be fixed integers, the Hecke operator Tp2(b, c) is
defined for any prime p - 2bc by

Tp2(b, c)(
∞∑
j=0

cjq
j) =

∞∑
j=0

cp2jq
j +

∞∑
j=0

(

(
−bcj

p

)
)cjq

j +
∞∑
j=0

cjq
p2j ,

where
(−bcj

p

)
is the Legendre symbol.



Conjecture (Cooper and Lam 2)

Let b and c take any of the values given in Table 2. Then for any
prime p with p - 2bc, we have

Tp2(b, c)(ϕ(q)ϕ(qb)ϕ(qc)) = (p + 1)ϕ(q)ϕ(qb)ϕ(qc).



Table 2

Data for Conjecture Cooper and Lam 2

b c

1 1, 2, 3, 4, 5, 6, 8, 9, 12, 21, 24

2 2, 3, 4, 5, 6, 8, 10, 16

3 3, 4, 6, 9, 10, 12, 18, 30

4 4, 6, 8, 12, 24

5 5, 8, 10, 25, 40

6 6, 9, 16, 18, 24

8 8, 16, 40

9 9, 12, 21, 24

10 30

12 12

16 24

21 21

24 24



Theorem (Berkovich and Jagy)

For any natural number n,

S(9n)− 3S(n) = 2R(1,1,3,0,0,1)(n)− 4R(4,3,4,0,4,0)(n),

S(25n)− 5S(n) = 4R(2,2,2,−1,1,1)(n)− 8R(7,8,8,−4,8,8)(n).



Berkovich and Jagy continued to investigate the value of
S(p2n)− pS(n) for arbitrary odd prime p. They constructed two
genera TG1,p and TG2,p, where TG1,p consists of all the ternary
quadratic forms with discriminant p2, while TG2,p is the set of
ternary quadratic forms ax2 + by2 + cz2 + ryz + szx + txy with
discriminant 16p2 satisfying two conditions, namely, r , s, t are even
and

R(a,b,c,r ,s,t)(n) = 0, n ≡ 1, 2 (mod 4). (3)

Then the generalization of the above Theorem reads as follows :



Theorem (Berkovich and Jagy)

Let p be an odd prime. Then for any natural number n,

S(p2n)− pS(n) = 48
∑

Q∈TG1,p

RQ(n)

|Aut(Q)|
− 96

∑
Q∈TG2,p

RQ(n)

|Aut(Q)|
,

where Aut(Q) is the finite group of integral automorphs of Q, and
a sum over forms in a genus is understood to be the finite sum
resulting from taking a single representative from each equivalence
class of forms.



Main results 1

Table 3

Cooper and Lam 1 holds for the following cases (in black)

b c

1 1, 2, 3, 4, 5, 6, 8, 9, 12, 21, 24

2 2, 3, 4, 5, 6, 8, 10, 13, 16, 22, 40, 70

3 3, 4, 5, 6, 9, 10, 12, 18, 21, 30, 45

4 4, 6, 8, 12, 24

5 5, 8, 10, 13, 25, 40

6 6, 9, 16, 18, 24

8 8, 10, 13, 16, 40

9 9, 12, 21, 24

10 30

12 12

16 24

21 21

24 24



Main results 2

Cooper and Lam 2 holds for all cases of Table 2.



Main results 3

We prove that Sun’s conjecture holds, i.e.,

S(1,1,3)(p) =


12h(−3p), if p ≡ 1 (mod 8),
8h(−3p), if p ≡ 5 (mod 8),
2h(−3p), if p ≡ 3 (mod 4);

and

S(1,1,3)(3p) =


4h(−p), if p ≡ 1 (mod 4),
24h(−p), if p ≡ 3 (mod 8),
16h(−p), if p ≡ 7 (mod 8),

where h(d) is the class number of the quadratic field Q(
√

d).



Main results 4

We give a ”global” proof of Berkovich and Jagy’s proof.



Recall that the matrix associated to
Q = ax2 + by2 + cz2 + ryz + szx + txy is

A =

2a t s
t 2b r
s r 2c

 .

The discriminant of Q is defined to be det(A)/2, the level of Q is
the minimal positive integer N such that NA−1 is an integral
matrix with even diagonal entries, and the class number of Q is
the number of equivalent classes in the genus of Q.
It is well known that

θQ(z) =
∑
n≥0

RQ(n)e2πinz

is a holomorphic function in the complex upper half-plane.



Furthermore θQ(z) is a modular form of weight 3/2 with level N

and character χ =
(2 det(A)

·
)
.

Denote by M (N, ω) the complex linear space of modular forms of
weight 3/2, level N and character ω. Let S (N, ω) be the subspace
of cusp forms in M (N, ω) and E (N, ω) the orthogonal complement
of S (N, ω) in M (N, ω) with respect to Petersson inner product.



It is clear that, if we can get an explicit expression of the function
θQ(z), then we immediately derive an explicit formula for the
representation number RQ(n). We note that, Pei constructed for
some particular N and ω, an explicit basis for the space E (N, ω).
By virtue of these results we are able to reprove Berkovich and
Jagy’s identity and solve several conjectures proposed in Cooper &
Lam and Sun.



Example: Q(x , y , z) = x2 + 5y 2 + 5z2

In this case, θQ(z) ∈ E (20, id) and S (20, id) = 0, where id is the
trivial character. Hence if one can get the values of θQ(z) at all
cusps, one can get the explicit coordinate of θQ(z) ∈ E (20, id).
Pei proved that

S(1,5,5)(m) = 2π
√

m · λ(m, 20) · α(m) ·
(

A(5,m) +
1

5

)
.

The meaning of three functions λ, α and A will be explained in
next two sides.



For any two integers a and b, let
(a

b

)
be the Kronecker symbol .

For any fixed nonzero integer t, we can define a function χt on the
integers as follows: Let t = qs2 with q the square-free part of t.

Then define χt =
(q

•

)
when q ≡ 1 (mod 4) and χt =

(
4q

•

)
when q ≡ 2, 3 (mod 4). One sees that χt is a quadratic Dirichlet

character. Denote by σ(m, 4D) the sum
∑ µ(a)χ−m(a)

ab , where µ is
the Möbius function, and the summation ranges over all the
positive integers a, b that are both coprime to 4D and satisfy
(ab)2 | m.

Lemma
Let u be the square-free part of `. Then

σ(`n2, 4D) =
1

n

∏
p| 4D

pep

·
∏

p- 4D

(
pep+1 − 1

p − 1
−
(
−u

p

)
· pep − 1

p − 1

) .



Recall that Lk(s, χ) =
∑

(n,k)=1

χ(n)n−s .

The function λ(m, 4D). Put

λ(m, 4D) :=
L4D(1, χ−m)

L4D(2, id)
· σ(m, 4D),

where id denotes the trivial character mod 4D.
The functions α(m). For any prime p, let hp(m) be the natural

number such that php(m) ‖ m and h′p(m) :=
m

php(m)
the p′-part of

m. Define

α(m) =


3 · 2−

1+h2(m)
2 , if h2(m) is odd,

3 · 2−1−
h2(m)

2 , if h2(m) is even and h′2(m) ≡ 1 (mod 4),

2−
h2(m)

2 , if h2(m) is even and h′2(m) ≡ 3 (mod 8),
0, if h2(m) is even and h′2(m) ≡ 7 (mod 8).



The functions A(p,m).

A(p,m) =


p−1 − (1 + p)p−

3+hp(m)

2 , if hp(m) is odd,

p−1 − 2p−1−
hp(m)

2 , if hp(m) is even and
(
−h′p(m)

p

)
= −1,

p−1, if hp(m) is even and
(
−h′p(m)

p

)
= 1,

where p is an odd prime.



Example: Q(x , y , z) = x2 + 5y 2 + 5z2

Let n be a positive integer with the prime factorization

n = 2e2
∏

p odd

pep . (4)

We denote by H(a,b,c)(n) the following product

H(a,b,c)(n) =
∏

p - 2abc

(
pep+1 − 1

p − 1
−
(
−abc

p

)
pep − 1

p − 1

)
.

Then
S(1,5,5)(n2) = 2 · 5e5H(1,5,5)(n).



Table 4

(a, b, c) S(a,b,c)(n
2)

(1, 1, 1) 6H(1,1,1)(n)

(1, 1, 2)
4H(1,1,2)(n), if n is odd,

12H(1,1,2)(n), if n is even

(1, 1, 3) 4(2e2+1 − 1)H(1,1,3)(n)

(1, 1, 4)
4H(1,1,4)(n), if n is odd,

6H(1,1,4)(n), if n is even

(1, 1, 5) 2(5e5+1 − 3)H(1,1,5)(n)

(1, 1, 6)
4H(1,1,6)(n), if n is odd,

4(2e2+1 − 3)H(1,1,6)(n), if n is even

(1, 1, 8)

4H(1,1,8)(n), if n is odd,

4H(1,1,8)(n), if n ≡ 2 (mod 4),

12H(1,1,8)(n), if n ≡ 0 (mod 4)

(1, 2, 2)
2H(1,2,2)(n), if n is odd,

6H(1,2,2)(n), if n is even

(1, 2, 3)
2(3e3+1 − 2)H(1,2,3)(n), if n is odd,

6(3e3+1 − 2)H(1,2,3)(n), if n is even.

(1, 2, 4)

2H(1,2,4)(n), if n is odd,

4H(1,2,4)(n), if n ≡ 2 (mod 4),

12H(1,2,4)(n), if n ≡ 0 (mod 4)



Table 4-continued

(a, b, c) S(a,b,c)(n
2)

(1, 2, 6) 2(3e3+1 − 2)H(1,2,6)(n)

(1, 3, 3) 2(2e2+2 − 3)H(1,3,3)(n)

(1, 3, 6)
2 · 3e3H(1,3,6)(n), if n is odd,

2 · 3e3+1H(1,3,6)(n), if n is even

(1, 4, 4)
2H(1,4,4)(n), if n is odd,

6H(1,4,4)(n), if n is even

(1, 4, 8)

2H(1,4,8)(n), if n is odd,

4H(1,4,8)(n), if n ≡ 2 (mod 4),

12H(1,4,8)(n), if n ≡ 0 (mod 4)

(1, 5, 5) 2 · 5e5H(1,5,5)(n)

(1, 6, 6)
2H(1,6,6)(n), if n is odd,

2(2e2+1 − 3)H(1,6,6)(n), if n is even

(2, 2, 3) 4(2e2 − 1)H(2,2,3)(n)

(2, 3, 3) 0

(2, 3, 6)
2(3e3 − 1)H(2,3,6)(n), if n is odd,

6(3e3 − 1)H(2,3,6)(n), if n is even



Let G be the genus containing the ternary quadratic form Q.
Recall that the mass of G is by definition

M(G) :=
∑
Q∈G

1

|Aut(Q)|
,

where the sum is over a complete representative system of
equivalence classes of forms in G. Then the theta series associated
to G is defined to be

θG(z) :=
1

M(G)

∑
Q∈G

θQ(z)

|Aut(Q)|
,

where θQ(z) is the usual theta series associated to the form Q.
If Q is ternary form with discriminant d and level N then the
function θG(z) is in the space E (N, χd), and θG(z) has the same
values as θQ(z) does at all cusps.



If the class number of Q(x , y , z) is 1, then for any prime p - N,

Tp2(θQ(z)) = (p + 1)θQ(z)

by the Lemma of Proposition 1 of [16].

[16]P.Ponomarev, Ternary quadratic forms and Shimura’s

correspondence, Nagoya Math. J. 81 (1981), 123–151.

All the ternary diagonal quadratic forms of Table 2 are of class
number 1 . So Conjecture Cooper and Lam 2 is true. Moreover,
Conjecture Cooper and Lam 2 is complete, that is, Table 2
contains exactly all the cases (b, c) such that

Tp2(θx2+by2+cz2(z)) = (p + 1)θx2+by2+cz2(z)

for any prime p - 2bc.



Berkovich and Jagy’s genus identity

Let p be an odd prime. Let θ(z) =
∞∑
n=0

S(n)qn, where q = e2πiz .

Then θ(z) is in the space E (4, id) ⊂ E (4p, id), where we use

“id”for the trivial character. Then function ψp(z) =
∞∑
n=0

S(p2n)qn

is in E (4p, id).
By Berkovich and Jagy, TG1,p consists of all the ternary quadratic
forms with discriminant p2 and TG2,p consists of the set of ternary
quadratic forms with discriminant 16p2 and particular genus
symbols. Then by Proposition 5 of [Lehman], both of the levels of
ternary forms in TG1,p and TG2,p are 4p which implies that the
theta series of TG1,p and TG2,p are all in E (4p, id).



Let

θi (z) =
∞∑
n=0

 ∑
Q∈TGi,p

RQ(n)

|Aut(Q)|

 qn, i = 1, 2.

Then θ(z), θ1(z), θ2(z) are all in E (4p, id).

Theorem
The theta series θ(z), θ1(z), θ2(z) are linearly independent in
E (4p, id) and

ψp(z) = pθ(z) + 48θ1(z)− 96θ2(z).



proof of the above Theorem
If p ≡ 3 (mod 4), then considering the coefficients of the constant
term, q-term and the q4-term, we have

θ(z) = 1 + 6 · q + ∗ · q2 + ∗ · q3 + 6 · q4 + · · · ,

θ1(z) =
p − 1

48
+

1

4
· q + ∗ · q2 + ∗ · q3 +

3

4
· q4 + · · · ,

θ2(z) =
p − 1

48
+ 0 · q + ∗ · q2 + ∗ · q3 +

1

4
· q4 + · · · ,

where the symbol “*” means that we don’t need to consider this
coefficient. Since the matrix

A =

1 (p − 1)/48 (p − 1)/48
6 1/4 0
6 3/4 1/4


is invertible, θ(z), θ1(z), θ2(z) are linearly independent. Hence

ψp(z) = 1 + 6(p + 2) · q + ∗ · q2 + ∗ · q3 + 6(p + 2) · q4 + · · ·
= pθ(z) + 48θ1(z)− 96θ2(z) .



If p ≡ 1 (mod 4), then by Lemma 2.3, we have

θ(z) = 1 + 6 · q + · · ·+ S(p) · qp + · · · ,

θ1(z) =
p − 1

48
+

1

4
· q + · · ·+ 1

4
h(−p) · qp + · · · ,

θ2(z) =
p − 1

48
+ 0 · q + · · ·+ 0 · qp + · · · .

Since the matrix

A =

 1 p−1
48

p−1
48

6 0 0
S(p) 1

4h(−p) 0


is invertible, θ(z), θ1(z), θ2(z) are linearly independent. And by
Lemma 2.4, we have

ψp(z) = 1 + 6(p + 2) · q + · · ·+ S(p3) · qp + · · ·
= pθ(z) + 48θ1(z)− 96θ2(z) .



For those cases in Table 1 that are not covered in Table 3, it is
also potential to derive the corresponding formulas for
representation numbers through the similar arguments. The idea
goes as follows. Let Q be a positive definite ternary form with
integer coefficients. Then the associated modular form θQ(z) has
weight 3/2 and level N. If Q has class number 1, then θQ(z) lies
in the space E (N, ω). Note that Pei has constructed an explicit
basis for E (N, ω), so it is possible to write θQ(z) explicitly as a
linear combination of this basis—-generally speaking this can be
done by computing the values of θQ(z) at all its cusps. Here we
simply benefit from Pei’s computations for cases in Table 3, which
was carried out in Pei’s paper. For other cases in Table 1, we
believe Cooper and Lam’s conjecture holds too, although we have
not been able to provide a rigorous proof.
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