Lattices with many Borcherds products
Stephan Ehlen

joint work with Jan Bruinier (Darmstadt)
and Eberhard Freitag (Heidelberg)

Explicit theory of Automorphic forms

24-28 March 2014
Tongji University
Shanghai, China
Finite quadratic modules

Finite quadratic modules
Finite quadratic modules

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z}-valued quadratic form Q is called a finite quadratic module (fqm).
Finite quadratic modules

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z}-valued quadratic form Q is called a finite quadratic module (fqm).

We write $(\mu, \nu) = Q(\mu + \nu) - Q(\mu) - Q(\nu)$ for the associated bilinear form.
Finite quadratic modules

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z}-valued quadratic form Q is called a *finite quadratic module* (fqm).

▶ We write $(\mu, \nu) = Q(\mu + \nu) - Q(\mu) - Q(\nu)$ for the associated bilinear form.

▶ The *level* of \mathcal{M} is the smallest positive integer $N \in \mathbb{Z}_{>0}$, such that $N \cdot Q(\mu) = 0 \in \mathbb{Q}/\mathbb{Z}$ for all $\mu \in M$.
Finite quadratic modules

Definition

A pair \(\mathcal{M} = (M, Q) \) consisting of a finite abelian group \(M \) and a non-degenerate \(\mathbb{Q}/\mathbb{Z} \)-valued quadratic form \(Q \) is called a *finite quadratic module* (fqm).

- We write \((\mu, \nu) = Q(\mu + \nu) - Q(\mu) - Q(\nu)\) for the associated bilinear form.
- The *level* of \(\mathcal{M} \) is the smallest positive integer \(N \in \mathbb{Z}_{>0} \), such that \(N \cdot Q(\mu) = 0 \in \mathbb{Q}/\mathbb{Z} \) for all \(\mu \in M \).
- The signature \(\text{sig}(\mathcal{M}) \pmod{8} \) is defined via

\[
\frac{1}{\sqrt{|M|}} \sum_{\mu \in M} e(Q(\mu)) = e\left(\frac{\text{sig}(\mathcal{M})}{8}\right).
\]

Here, \(e(x) = e^{2\pi ix} \).
Example
Example

Let \((L, Q)\) be an even lattice.
Example

- Let (L, Q) be an even lattice
- and let $L' = \{ v \in L \otimes \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z} \}$ be the dual lattice.
Finite quadratic modules

Example

- Let \((L, Q)\) be an even lattice
- and let \(L' = \{v \in L \otimes \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}\) be the dual lattice.
- Then the pair \(\mathcal{M}_L = (L'/L, Q \pmod{\mathbb{Z}})\) is a finite quadratic module.
Finite quadratic modules

Example

- Let \((L, Q)\) be an even lattice
- and let \(L' = \{v \in L \otimes \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}\) be the dual lattice.
- Then the pair \(\mathcal{M}_L = (L'/L, Q \pmod{\mathbb{Z}})\) is a finite quadratic module.
- Every fqm can be obtained this way.
Example

- Let \((L, Q)\) be an even lattice
- and let \(L' = \{v \in L \otimes_\mathbb{Q} \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}\) be the dual lattice.
- Then the pair \(M_L = (L'/L, Q \pmod{\mathbb{Z}})\) is a finite quadratic module.
- Every fqm can be obtained this way.
- If the signature of \(L\) is \((b^+, b^-)\), we have by Milgram’s formula that \(\text{sig}(M_L) \equiv b^+ - b^- \pmod{8}\).
The Weil representation

Associated with M is a representation ρ_M of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

$Mp_2(\mathbb{Z}) = \{ (A, \phi(\tau)) | A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), \phi : \mathbb{H} \rightarrow \mathbb{C}, \phi^2(\tau) = c\tau + d \}$.

$Mp_2(\mathbb{Z})$ is generated by $S = (\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau})$, $T = (\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1)$.

We have $\rho_M(T)e^\mu = e^{-Q(\mu)}e^\mu \rho_M(S)e^\mu = e^{\frac{\text{sgn}(M)}{8}}\sqrt{|M|}\sum_{\nu \in M} e^{(\mu, \nu)}e^\nu$.
The Weil representation

- Associated with \mathcal{M} is a representation $\rho_\mathcal{M}$ of $\text{Mp}_2(\mathbb{Z})$ on $\mathbb{C}[M]$.
The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\text{Mp}_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

- $\text{Mp}_2(\mathbb{Z}) = \left\{ (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \phi : \mathbb{H} \to \mathbb{C}, \phi^2(\tau) = c\tau + d \right\}$.
The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\text{Mp}_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

- $\text{Mp}_2(\mathbb{Z}) = \left\{ (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \phi : \mathbb{H} \to \mathbb{C}, \phi^2(\tau) = c\tau + d \right\}$.

- $\text{Mp}_2(\mathbb{Z})$ is generated by

$$S = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \quad T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right).$$
The Weil representation

- Associated with \mathcal{M} is a representation $\rho_\mathcal{M}$ of $\text{Mp}_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

- $\text{Mp}_2(\mathbb{Z}) = \left\{(A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \phi : \mathbb{H} \rightarrow \mathbb{C}, \phi^2(\tau) = c\tau + d \right\}$.

- $\text{Mp}_2(\mathbb{Z})$ is generated by

$$S = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \quad T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right).$$

- We have

$$\rho_\mathcal{M}(T)e_\mu = e(-Q(\mu))e_\mu.$$
The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\text{Mp}_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

- $\text{Mp}_2(\mathbb{Z}) = \left\{ (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \phi : \mathbb{H} \to \mathbb{C}, \phi^2(\tau) = c\tau + d \right\}$.

- $\text{Mp}_2(\mathbb{Z})$ is generated by

 $$S = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \quad T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right).$$

- We have

 $$\rho_{\mathcal{M}}(T)e_{\mu} = e(-Q(\mu))e_{\mu},$$

 $$\rho_{\mathcal{M}}(S)e_{\mu} = \frac{e(\text{sig}(\mathcal{M})/8)}{\sqrt{|M|}} \sum_{\nu \in M} e((\mu, \nu))e_{\nu}.$$
Vector valued modular forms

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \to \mathbb{C}[\mathcal{M}]$ be a holomorphic function.
Vector valued modular forms

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \rightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$ require the transformation property
Vector valued modular forms

Let $\mathcal{M} = (M, Q)$ be a fqfm and let $f : \mathbb{H} \rightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau).$$
Vector valued modular forms

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \to \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_\mathcal{M}((\gamma, \phi)) f(\tau).$$

▶ We write $M_{k,\mathcal{M}}$ for the space of modular forms ($c_f(n, \mu) = 0$ for $n < 0$),
Vector valued modular forms

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \rightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_M((\gamma, \phi)) f(\tau).$$

- We write $M_{k, \mathcal{M}}$ for the space of modular forms ($c_f(n, \mu) = 0$ for $n < 0$),
- $S_{k, \mathcal{M}}$ for the subspace of cusp forms ($c_f(n, \mu) = 0$ for all $\mu \in M$ with $Q(\mu) = 0$),
Vector valued modular forms

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \rightarrow \mathbb{C}[[\mathcal{M}]]$ be a holomorphic function. For $(\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_M((\gamma, \phi)) f(\tau).$$

- We write $M_{k,\mathcal{M}}$ for the space of modular forms ($c_f(n, \mu) = 0$ for $n < 0$),
- $S_{k,\mathcal{M}}$ for the subspace of cusp forms ($c_f(n, \mu) = 0$ for all $\mu \in M$ with $Q(\mu) = 0$),
- and $M_{k,\mathcal{M}}^!$: weakly holomorphic modular forms ($c_f(n, \mu) = 0$ for $n < n_0 \in \mathbb{Z}$).
Borcherds products
Borcherds products

Let L be an even lattice of signature $(2, n), n \geq 1.$
Borcherds products

- Let L be an even lattice of signature $(2, n), \ n \geq 1$.

- Borcherds lift:

$$f \in M^{1}_{k,M_{L}(-1)} \rightarrow \Psi(z, f),$$
Borcherds products

- Let L be an even lattice of signature $(2, n)$, $n \geq 1$.
- Borcherds lift:
 \[f \in M^!_{k, M_L(-1)} \longrightarrow \Psi(z, f), \]
 where $k = 1 - n/2$ and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_L \subset O(L)$.
Borcherds products

- Let \(L \) be an even lattice of signature \((2, n), n \geq 1\).
- Borcherds lift:
 \[
 f \in \mathcal{M}_{k, M_L}(-1) \longrightarrow \Psi(z, f),
 \]
 where \(k = 1 - n/2 \) and \(\Psi(z, f) \) is a meromorphic modular form for a subgroup \(\Gamma_L \subset O(L) \).
- The weight of \(\Psi(z, f) \) is \(c_f(0, 0)/2 \).
Borcherds products

- Let L be an even lattice of signature $(2, n)$, $n \geq 1$.
- Borcherds lift:
 \[
 f \in M^!_{k, M_L(-1)} \longrightarrow \Psi(z, f),
 \]
 where $k = 1 - n/2$ and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_L \subset O(L)$.
- The weight of $\Psi(z, f)$ is $c_f(0, 0)/2$.
- and we have
 \[
 \text{div}(f) = \sum_{\mu \in L'/L} \sum_{n<0} c_f(n, \mu) H(n, \mu),
 \]
 for $H(n, \mu)$ the Heegner divisor of index (n, μ).
Simple lattices
Simple lattices

- The existence of a Borcherds product with a given divisor

\[\sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) H(n, \mu) \]

with \(c(n, \mu) \in \mathbb{Z} \), depends on the existence of \(f \in M_{1-n/2, M_L(-1)} \) with
Simple lattices

- The existence of a Borcherds product with a given divisor
 \[\sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) H(n, \mu) \]

 with \(c(n, \mu) \in \mathbb{Z} \), depends on the existence of \(f \in M_{1-n/2, M_L(-1)} \) with
 \[f = \sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) e(n\tau) + \text{higher order terms}. \]

- Obstructions for the existence of such an \(f \):
Simple lattices

- The existence of a Borcherds product with a given divisor

\[\sum_{\mu \in L'/L} \sum_{n<0} c(n, \mu) H(n, \mu) \]

with \(c(n, \mu) \in \mathbb{Z} \), depends on the existence of \(f \in M_{1-n/2, ML}^1(-1) \) with

\[f = \sum_{\mu \in L'/L} \sum_{n<0} c(n, \mu) e(n\tau) + \text{higher order terms.} \]

- Obstructions for the existence of such an \(f \):
 - \(c(n, -\mu) = c(n, \mu) \),
Simple lattices

- The existence of a Borcherds product with a given divisor

\[\sum_{\mu \in L'/L} \sum_{n<0} c(n, \mu) H(n, \mu) \]

with \(c(n, \mu) \in \mathbb{Z} \), depends on the existence of \(f \in M_{1-n/2, M_L}^!(-1) \) with

\[f = \sum_{\mu \in L'/L} \sum_{n<0} c(n, \mu) e(n\tau) + \text{higher order terms.} \]

- Obstructions for the existence of such an \(f \):
 - \(c(n, -\mu) = c(n, \mu) \),
 - for every \(g \in S_{1+n/2, M_L} \), we have

\[\sum_{\mu \in L'/L} \sum_{n<0} c_f(n, \mu)c_g(-n, \mu) = 0. \]
Simple lattices

Therefore, if $S_{1+n/2}, \mathcal{M}_L(\mathbf{-1}) = \{0\}$, then every principal part with satisfying $c(n, -\mu) = c(n, \mu)$ occurs.

We call a lattice of signature $(2, n)$ simple if $S_{1+n/2}, \mathcal{M}_L = \{0\}$.

Goal: Classify all isomorphism classes of simple lattices.
Simple lattices

Therefore, if \(S_{1+n/2,M_L(-1)} = \{0\} \), then every principal part with satisfying \(c(n, -\mu) = c(n, \mu) \) occurs.
Simple lattices

Therefore, if $S_{1+n/2,\mathcal{M}_L}(-1) = \{0\}$, then every principal part with satisfying $c(n, -\mu) = c(n, \mu)$ occurs.

We call a lattice of signature $(2, n)$ *simple* if $S_{1+n/2,\mathcal{M}_L} = \{0\}$.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 8
Simple lattices

- Therefore, if $S_{1+n/2, \mathcal{M}_L}(-1) = \{0\}$, then every principal part with satisfying $c(n, -\mu) = c(n, \mu)$ occurs.

- We call a lattice of signature $(2, n)$ *simple* if $S_{1+n/2, \mathcal{M}_L} = \{0\}$.

- Goal: Classify all isomorphism classes of simple lattices.
The dimension formula
The dimension formula

- Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.
The dimension formula

- Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.
- If $2k \not\equiv \text{sig}(\mathcal{M}) \pmod{2}$, then $M_{k,\mathcal{M}} = \{0\}$.
The dimension formula

- Let \(k \in \frac{1}{2} \mathbb{Z} \) and let \(\mathcal{M} = (M, Q) \) be an fqm.
- If \(2k \not\equiv \text{sig}(\mathcal{M}) \pmod{2} \), then \(M_{k, \mathcal{M}} = \{0\} \).
- Assume that \(2k \equiv -\text{sig}(\mathcal{M}) \pmod{4} \). Let \(W = \text{span}\{e_{\mu} + e_{-\mu}\} \) and \(d = \dim W \). Denote by \(\rho \) the restriction of \(\rho_{\mathcal{M}} \) to \(W \).
The dimension formula

Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.

- If $2k \not\equiv \text{sig}(\mathcal{M}) \pmod{2}$, then $M_{k,\mathcal{M}} = \{0\}$.
- Assume that $2k \equiv -\text{sig}(\mathcal{M}) \pmod{4}$. Let $W = \text{span}\{e_\mu + e_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e(\nu_j)$ for $j = 1, \ldots, d$ and $0 \leq \nu_j < 1$, we write $\alpha(A) = \nu_1 + \ldots + \nu_d$.
The dimension formula

Assume that $2k \equiv -\text{sig}(\mathcal{M}) \pmod{4}$. Let $W = \text{span}\{e_{\mu} + e_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_\mathcal{M}$ to W.

For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e(\nu_j)$ for $j = 1, \ldots, d$ and $0 \leq \nu_j < 1$, we write $\alpha(A) = \nu_1 + \ldots + \nu_d$.

Theorem

We have

$$\dim M_{k, \mathcal{M}} = d + \frac{dk}{12} - \alpha\left(e(k/4)\rho(S)\right) - \alpha\left((e(k/6)\rho(ST))^{-1}\right) - \alpha(T).$$
The dimension formula

- Assume that $2k \equiv -\text{sig}(\mathcal{M}) \pmod{4}$. Let $W = \text{span}\{e_\mu + e_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.

- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e(\nu_j)$ for $j = 1, \ldots, d$ and $0 \leq \nu_j < 1$, we write $\alpha(A) = \nu_1 + \ldots + \nu_d$.

Theorem

- **We have**

 $$
 \dim M_{k,\mathcal{M}} = d + \frac{dk}{12} - \alpha(e(k/4)\rho(S)) - \alpha((e(k/6)\rho(ST))^{-1}) - \alpha(T)
 $$

- **dim $S_{k,\mathcal{M}} = \dim M_{k,\mathcal{M}} - |\{\mu \in M/\{\pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|$$**

 $$
 + \begin{cases}
 0, & \text{if } k \neq 2, \\
 \dim M_{0,\mathcal{M}(-1)}, & \text{if } k = 2.
 \end{cases}
 $$
Trivial estimates

Note that $d = |\mathcal{M}/\{\pm 1\}|$.

We have $\alpha_1 = \alpha(e(k/4)\rho(S)) \leq 1/2d$, $\alpha_2 = \alpha((e(k/6)\rho(ST)) - 1) \leq 2/3d$.

Let $\alpha_3 = \rho(T)$ and $\alpha_4 = |\{\mu \in \mathcal{M}/\{\pm 1\} | Q(\mu) \in \mathbb{Z}\}|$.

We have $\alpha_3 + \alpha_4 \leq d$.
Trivial estimates

Note that $d = |M/\{±1\}|$.
Trivial estimates

- Note that $d = |M/\{±1\}|$.
- We have

$$\alpha_1 = \alpha \left(e(k/4) \rho(S) \right) \leq \frac{1}{2} d,$$

$$\alpha_2 = \alpha \left((e(k/6) \rho(ST))^{-1} \right) \leq \frac{2}{3} d,$$
Trivial estimates

- Note that $d = |M/\{\pm 1\}|$.
- We have

$$\alpha_1 = \alpha \left(e^{(k/4)\rho(S)} \right) \leq \frac{1}{2} d,$$

$$\alpha_2 = \alpha \left((e^{(k/6)\rho(ST)})^{-1} \right) \leq \frac{2}{3} d,$$

- Let $\alpha_3 = \rho(T)$ and $\alpha_4 = |\{\mu \in M/\{\pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|$.
Trivial estimates

- Note that $d = |M/\{\pm 1\}|$.
- We have

$$\alpha_1 = \alpha (e(k/4)\rho(S)) \leq \frac{1}{2}d,$$

$$\alpha_2 = \alpha ((e(k/6)\rho(ST))^{-1}) \leq \frac{2}{3}d,$$

- Let $\alpha_3 = \rho(T)$ and $\alpha_4 = |\{\mu \in M/\{\pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|$.
- We have

$$\alpha_3 + \alpha_4 \leq d.$$
Trivial estimates

Corollary

If \(k > 14 \) and \(2k \equiv -\text{sig}(\mathcal{M}) \mod 4 \), then \(S_{k,\mathcal{M}} \neq \{0\} \).
Trivial estimates

Corollary

If $k > 14$ *and* $2k \equiv -\text{sig}(\mathcal{M}) \pmod{4}$, *then* $S_{k,\mathcal{M}} \neq \{0\}$.

Remark

This bound is sharp! (We have $S_{14}(\text{SL}_2(\mathbb{Z})) = \{0\}$.)
Better estimates

Definition

Let N be the level of \mathcal{M}. For $s \in \mathbb{R}$ define the divisor sum

$$\sigma(s, \mathcal{M}) = \sum_{a \mid N} a^s |M[a]|.$$
Better estimates

Definition

Let N be the level of \mathcal{M}. For $s \in \mathbb{R}$ define the divisor sum

$$
\sigma(s, \mathcal{M}) = \sum_{a \mid N} a^s |M[a]|
$$
Better estimates

Definition

Let \(N \) be the level of \(\mathcal{M} \). For \(s \in \mathbb{R} \) define the divisor sum

\[
\sigma(s, \mathcal{M}) = \sum_{a \mid N} a^s |M[a]|.
\]

We have

\[
\sigma(s, \mathcal{M}) \leq \sqrt{\frac{2|\mathcal{M}|}{N}} \sigma_{s+1/2}(N).
\]
Better estimates

Proposition

We have
Better estimates

Proposition

We have

\[|\alpha_1 - d/4| \leq \frac{1}{4} \sqrt{|M[2]|}, \]

\[|\alpha_2 - d/3| \leq \frac{1}{3} \sqrt{3 \left(1 + \sqrt{|M[3]|}\right)}, \]

\[\alpha_3 \leq |M[2]|^2 + \sqrt{|M|} \sigma(-1, M), \]

\[|\alpha_3 - d/2 + \alpha_4/2| \leq |M[2]|^8 + \alpha_5^2, \]

\[\alpha_5 \leq \sqrt{|M|} \pi \left(\frac{3}{2} + \ln(N)\right) \left(\sigma(-1, M) - \sqrt{|M|}N\right). \]
Better estimates

Proposition

We have

- \[|\alpha_1 - d/4| \leq \frac{1}{4} \sqrt{|M[2]|}, \]
- \[|\alpha_2 - d/3| \leq \frac{1}{3\sqrt{3}} \left(1 + \sqrt{|M[3]|}\right), \]
Better estimates

Proposition

We have

- $|\alpha_1 - d/4| \leq \frac{1}{4} \sqrt{|M[2]|}$,

- $|\alpha_2 - d/3| \leq \frac{1}{3\sqrt{3}} \left(1 + \sqrt{|M[3]|}\right)$,

- $\alpha_4 \leq \frac{|M[2]|}{2} + \frac{\sqrt{|M|}}{2} \sigma(-1, M)$,
Better estimates

Proposition

We have

- \(|\alpha_1 - d/4| \leq \frac{1}{4} \sqrt{|M[2]|}|,\)
- \(|\alpha_2 - d/3| \leq \frac{1}{3\sqrt{3}} \left(1 + \sqrt{|M[3]|}\right),\)
- \(\alpha_4 \leq \frac{|M[2]|}{2} + \frac{\sqrt{|M|}}{2} \sigma(-1, \mathcal{M}),\)
- \(|\alpha_3 - d/2 + \alpha_4/2| \leq \frac{|M[2]|}{8} + \alpha_5/2\)
Better estimates

Proposition

We have

- \(|\alpha_1 - d/4| \leq \frac{1}{4} \sqrt{|M[2]|},\)
- \(|\alpha_2 - d/3| \leq \frac{1}{3\sqrt{3}} \left(1 + \sqrt{|M[3]|}\right),\)
- \(\alpha_4 \leq \frac{|M[2]|}{2} + \frac{\sqrt{|M|}}{2} \sigma(-1, \mathcal{M}),\)
- \(|\alpha_3 - d/2 + \alpha_4/2| \leq \frac{|M[2]|}{8} + \alpha_5/2\)
- \(\alpha_5 \leq \frac{\sqrt{|M|}}{\pi} (3/2 + \ln(N)) \left(\sigma(-1, \mathcal{M}) - \sqrt{|M|}/N\right)\)
Better estimates

Theorem (BEF)
For every \(\varepsilon > 0 \) there is a \(C > 0 \), such that
\[
\dim S_{k,M} \geq d(k - 1 + \frac{1}{12} - CN\varepsilon^{-1/2}).
\]

Corollary
Let \(r \in \mathbb{Z}_{>0} \). There exist only finitely many isomorphism classes of finite quadratic modules \(M \) with minimal number of generators \(r \), such that \(S_{k,M} = \{0\} \) for some \(k \geq 2 \) with \(k \equiv -\sigma(M) \pmod{4} \).

Problem for our application: if we make \(C \) explicit, the bounds on \(N \) we can obtain are huge.
Better estimates

Theorem (BEF)

For every $\varepsilon > 0$ *there is a* $C > 0$, *such that*

$$\dim S_{k,\mathcal{M}} \geq d \left(\frac{k - 1}{12} - CN^{\varepsilon - 1/2} \right).$$
Better estimates

Theorem (BEF)

For every $\varepsilon > 0$ there is a $C > 0$, such that

$$\dim S_{k,\mathcal{M}} \geq d \left(\frac{k - 1}{12} - CN^{\varepsilon - 1/2} \right).$$

Corollary

Let $r \in \mathbb{Z}_{>0}$. There exist only finitely many isomorphism classes of finite quadratic modules \mathcal{M} with minimal number of generators r, such that $S_{k,\mathcal{M}} = \{0\}$ for some $k \geq 2$ with $k \equiv -\text{sig}(\mathcal{M}) \pmod{4}$.

Problem for our application: if we make C explicit, the bounds on N we can obtain are huge.
Better estimates

Theorem (BEF)

For every $\varepsilon > 0$ there is a $C > 0$, such that

$$\dim S_{k,\mathcal{M}} \geq d \left(\frac{k - 1}{12} - CN^{\varepsilon - 1/2} \right).$$

Corollary

Let $r \in \mathbb{Z}_{>0}$. There exist only finitely many isomorphism classes of finite quadratic modules \mathcal{M} with minimal number of generators r, such that $S_{k,\mathcal{M}} = \{0\}$ for some $k \geq 2$ with $k \equiv -\text{sig}(\mathcal{M}) \pmod{4}$.

- Problem for our application: if we make C explicit, the bounds on N we can obtain are huge.
Better estimates

Example

Remark
Better estimates

Example

Remark

▶ Bounding r is necessary.
Example

Remark

- Bounding r is necessary.
- Consider the finite quadratic module \mathcal{M} given by $M = (\mathbb{Z}/3\mathbb{Z})^{2n+1}$ and $Q(x) = \frac{1}{3}(x_1^2 + \ldots + x_{2n}^2 - (-1)^n x_{2n+1}^2)$.
Better estimates

Example

Remark

- Bounding r is necessary.
- Consider the finite quadratic module M given by $M = (\mathbb{Z}/3\mathbb{Z})^{2n+1}$ and $Q(x) = \frac{1}{3}(x_1^2 + \ldots + x_{2n}^2 - (-1)^n x_{2n+1}^2)$.
- We have $r = 2n + 1$, $N = 3$, $\text{sig}(M) = 6$ and

$$S_{3,M} = \{0\}.$$
Computational difficulty
Computational difficulty

- For $\varepsilon = 1/5$ we can get for instance $C = 18.7$ and this would give $N \geq 6.84 \cdot 10^7$ for $k = 2$.
Computational difficulty

- For $\varepsilon = 1/5$ we can get for instance $C = 18.7$ and this would give $N \geq 6.84 \cdot 10^7$ for $k = 2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
Computational difficulty

- For $\varepsilon = 1/5$ we can get for instance $C = 18.7$ and this would give $N \geq 6.84 \cdot 10^7$ for $k = 2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
Computational difficulty

- For $\varepsilon = 1/5$ we can get for instance $C = 18.7$ and this would give $N \geq 6.84 \cdot 10^7$ for $k = 2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
- and an explicit formula for $\dim M_0, M(-1)$!
Computational difficulty

- For $\varepsilon = 1/5$ we can get for instance $C = 18.7$ and this would give $N \geq 6.84 \cdot 10^7$ for $k = 2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
- and an explicit formula for $\dim M_{0,\mathcal{M}(-1)}$!
- We did not try to do this.
Anisotropic modules

Definition

A finite quadratic module \(M = (M, Q) \) is called isotropic if there exists a \(m \in M, m \neq 0 \) with \(Q(m) = 0 \in Q/\mathbb{Z} \). Otherwise, \(M \) is called anisotropic.

Example

The anisotropic fqm's of odd prime level \(p \) are \((\mathbb{Z}/p\mathbb{Z}, ax^2p) \) and \((\mathbb{Z}/p\mathbb{Z})^2, x^2 - ay^2p) \), \((a^p) = -1 \).

If \(M \) is anisotropic, \(N = 2^t N' \), \(t \in \{0, 1, 2, 3\} \) and \(N' \) is odd and squarefree.
Anisotropic modules

Definition

A finite quadratic module $\mathcal{M} = (M, Q)$ is called *isotropic* if there exists a $m \in M$, $m \neq 0$ with $Q(m) = 0 \in \mathbb{Q}/\mathbb{Z}$. Otherwise, \mathcal{M} is called *anisotropic*.
Anisotropic modules

Definition

A finite quadratic module $\mathcal{M} = (M, Q)$ is called \textit{isotropic} if there exists a $m \in M$, $m \neq 0$ with $Q(m) = 0 \in \mathbb{Q}/\mathbb{Z}$. Otherwise, \mathcal{M} is called \textit{anisotropic}.

Example

The anisotropic fqm’s of odd prime level p are

\[
\left(\mathbb{Z}/p\mathbb{Z}, \frac{ax^2}{p} \right), \quad a \in (\mathbb{Z}/p\mathbb{Z})^x
\]

and

\[
\left((\mathbb{Z}/p\mathbb{Z})^2, \frac{x^2 - ay^2}{p} \right), \quad \left(\frac{a}{p} \right) = -1.
\]
Anisotropic modules

Definition

A finite quadratic module $\mathcal{M} = (M, Q)$ is called *isotropic* if there exists a $m \in M$, $m \neq 0$ with $Q(m) = 0 \in \mathbb{Q}/\mathbb{Z}$. Otherwise, \mathcal{M} is called *anisotropic*.

Example

The anisotropic fqms of odd prime level p are

\[
\left(\mathbb{Z}/p\mathbb{Z}, \frac{ax^2}{p} \right), \quad a \in (\mathbb{Z}/p\mathbb{Z})^\times
\]

and

\[
\left((\mathbb{Z}/p\mathbb{Z})^2, \frac{x^2 - ay^2}{p} \right), \quad \left(\frac{a}{p} \right) = -1.
\]

If \mathcal{M} is anisotropic, $N = 2^t N'$, $t \in \{0, 1, 2, 3\}$ and N' is odd and squarefree.
An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M} = (M, Q)$ be an anisotropic fqam. Assume for simplicity that $|M|$ is odd.
An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M} = (M, Q)$ be an anisotropic fqm. Assume for simplicity that $|M|$ is odd. Define

$$R = \prod_{p \mid N \text{ord}_p(|M|) = 2} p.$$

Then

$$\alpha_5 = - \sum_{d \mid N \atop d(d, R)} \epsilon(d)(N/d, R) H(-d(d, R)),$$
An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M} = (M, Q)$ be an anisotropic fqm. Assume for simplicity that $|M|$ is odd. Define

\[R = \prod_{\substack{p | N \ord_p(|M|) = 2}} p. \]

Then

\[\alpha_5 = - \sum_{\substack{d | N \quad d(d,R)}} \epsilon(d)(N/d, R) H(-d(d, R)), \]

where $|\epsilon(d)| = 1$ and $H(-D)$ is the number of primitive positive definite quadratic forms of discriminant $-D$ for $D > 4$, $H(-3) = 1/3$, $H(-4) = 1/4$.
Estimates

Lemma
We have $H(−D) \leq \sqrt{D \ln D} \pi$.

Corollary
Let M be an anisotropic fqm. Then $\dim S_k, M \geq (|A| + 1)(k - 1) - 3 - 0.86 \frac{5}{8} \ln(2|A|)$.

Corollary
If $M = (M, Q)$ is anisotropic and $2^k \equiv -\sigma_4(M) \pmod{4}$ with $|M| \geq 5.3 \cdot 10^6$, then $S_k, M \neq \{0\}$.
Anisotropic modules

Estimates

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.
Anisotropic modules

Estimates

Lemma

We have \(H(-D) \leq \frac{\sqrt{D} \ln D}{\pi} \).

Corollary

Let \(M \) be an anisotropic fqM.
Estimates

Lemma

We have \(H(-D) \leq \frac{\sqrt{D} \ln D}{\pi} \).

Corollary

Let \(\mathcal{M} \) be an anisotropic fqm. Then

\[
\dim S_{k,\mathcal{M}} \geq \frac{(|A| + 1)(k - 1)}{24} - 3 - 0.86 |A|^{5/8} \ln(2 |A|).
\]
Estimates

Lemma

We have \(H(-D) \leq \frac{\sqrt{D} \ln D}{\pi} \).

Corollary

Let \(\mathcal{M} \) be an anisotropic fqm. Then

\[
\dim S_{k,\mathcal{M}} \geq \frac{(|A| + 1)(k - 1)}{24} - 3 - 0.86 |A|^{5/8} \ln(2|A|).
\]

Corollary

If \(\mathcal{M} = (M, Q) \) is anisotropic and \(2k \equiv -\text{sig}(\mathcal{M}) \pmod{4} \) with \(|M| \geq 5.3 \cdot 10^6 \), then \(S_{k,\mathcal{M}} \neq \{0\} \).
List of all k-simple anisotropic fqms
List of all k-simple anisotropic fqms's

<table>
<thead>
<tr>
<th>k</th>
<th>signature</th>
<th>k-simple finite quadratic modules</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>$1^+1, 5^-1, 2^{+1}_14^-1, 3^{+1}11^-1, 2^{+2}5^-1, 2^{+2}3^+1,$ $2^{+2}3^-1, 13^-1, 2^{+2}7^+1, 17^+1, 3^-17^-1,$ $2^{+1}_14^+_13^+1, 2^{+2}3^+15^+1$</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$2^-2, 3^+2, 5^+1, 5^-2, 2^{+1}_14^-3, 3^-111^-1, 2^-25^-1,$ $2^{+2}3^-1, 2^{+2}3^+1, 13^+1, 2^{+2}7^+1, 17^-1,$ $3^+17^-1, 2^{+1}_14^+_13^-1, 2^{+2}3^-15^-1$</td>
<td>15</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>3</td>
<td>$2^{+3}_3, 4^-1, 4^-15^-1, 2^+_13^-1, 2^+_13^+2, 2^+_17^+1,$ $2^{+1}_111^-1, 4^+_17^+1, 2^+_715^+1, 4^+_13^-1, 4^-13^+1,$ $2^{+1}_13^-15^-1$</td>
<td>12</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>7</td>
<td>$2^+_7, 4^+_7, 2^+_13^+1$</td>
<td>3</td>
</tr>
</tbody>
</table>
List of all k-simple anisotropic fqms

<table>
<thead>
<tr>
<th>k</th>
<th>signature</th>
<th>k-simple finite quadratic modules</th>
<th>count</th>
</tr>
</thead>
</table>
| 3 | 2 | $3^{-1}, 2_{2}^{+2}, 2^{-2}3^{+1}, 7^{+1}, 2_{1}^{+1}4_{1}^{+1}, 11^{-1},$
| | | $3^{+1}5^{+1}, 3^{-1}5^{+1}, 2_{2}^{+2}5^{-1}, 23^{+1}$ | 10 |
| 3 | 6 | 3^{+1} | 1 |
| $\frac{7}{2}$ | 1 | $2_{1}^{+1}, 4_{1}^{+1}, 2_{7}^{+1}3^{-1}, 2_{1}^{+1}5^{-1}, 4_{3}^{+1}3^{+1}$ | 5 |
| $\frac{7}{2}$ | 5 | 4_{5}^{-1} | 1 |
| 4 | 0 | $1^{+1}, 5^{-1}$ | 2 |
| 4 | 4 | $5^{+1}, 2^{-2}$ | 2 |
| $\frac{9}{2}$ | 3 | $4_{3}^{-1}, 2_{1}^{+1}3^{-1}$ | 2 |
| $\frac{9}{2}$ | 7 | 2_{7}^{+1} | 1 |
List of all k-simple anisotropic fqm's

<table>
<thead>
<tr>
<th>k</th>
<th>signature</th>
<th>k-simple finite quadratic modules</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>$3^{-1}, 2^2, 7^1$</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3^1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{11}{2}$</td>
<td>1</td>
<td>$2^1, 4^1$</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1^1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3^{-1}</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{15}{2}$</td>
<td>1</td>
<td>2^1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1^1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1^1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1^1</td>
<td>1</td>
</tr>
</tbody>
</table>
List of all \(k \)-simple anisotropic fqm’s

<table>
<thead>
<tr>
<th>(k)</th>
<th>signature</th>
<th>(k)-simple finite quadratic modules</th>
<th>count</th>
</tr>
</thead>
</table>

In total 78 pairs \((M, k)\) and 50 isomorphism classes of modules.
List of all k-simple anisotropic fqm’s

- In total 78 pairs (\mathcal{M}, k)
List of all k-simple anisotropic fqms

- In total 78 pairs (\mathcal{M}, k)
- and 50 isomorphism classes of modules.
How to get all of them?
How to get all of them?

- Let $\mathcal{M} = (M, Q)$ be an fqm.
How to get all of them?

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
How to get all of them?

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M}/U := U^\perp / U$ defines an fqm of order $|M| / |U|^2$ and of the same signature.
How to get all of them?

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M}/U := U^\perp/\mathbb{U}$ defines an fqm of order $|M|/|U|^2$ and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^\perp/\mathbb{U} is anisotropic.
How to get all of them?

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M}/U := U^\perp/U$ defines an fqm of order $|M|/|U|^2$ and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^\perp/U is anisotropic.
- We have an inclusion (induction from isotropic subgroups)

$$S_{k,\mathcal{M}/U} \hookrightarrow S_{k,\mathcal{M}}.$$
How to get all of them?

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M}/U := U^\perp/U$ defines an fqm of order $|M|/|U|^2$ and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^\perp/U is anisotropic.
- We have an inclusion (induction from isotropic subgroups)

$$S_{k, \mathcal{M}/U} \hookrightarrow S_{k, \mathcal{M}}.$$

- Therefore, if $S_{k, \mathcal{M}/U} \neq \{0\}$, then $S_{k, \mathcal{M}} \neq 0.$
Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}. $$
Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subseteq \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$
Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$

- **Nice property:**

 $$B(\mathcal{M}, m \cdot n) = \bigcup_{\mathcal{N} \in B(\mathcal{M}, m)} B(\mathcal{N}, n).$$
Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$

▶ Nice property:

$$B(\mathcal{M}, m \cdot n) = \bigcup_{\mathcal{N} \in B(\mathcal{M}, m)} B(\mathcal{N}, n).$$

▶ Moreover, we can get very good bounds on primes p, such that for all $\mathcal{N} \in B(\mathcal{M}, p)$: $\dim S_{k, \mathcal{N}} > 0$. (The largest one is 37 for $k = 2$)
Our algorithm
Our algorithm

Example: signature $6, r = 6, k = 3$. (corresponds to signature $(2, 4)$)
Statistics

There are 90 finite quadratic modules of signature $2 - n$ for $n \geq 2$ with minimal number of generators $\leq 2 + n$, such that $S_1 + n/2, M = \{0\}$.
There are 90 finite quadratic modules of signature $2 - n$ for $n \geq 2$ with minimal number of generators $\leq 2 + n$, such that $S_{1+n/2,\mathcal{M}} = \{0\}$.

<table>
<thead>
<tr>
<th>n</th>
<th>number</th>
<th>largest order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>47</td>
<td>$625 : 5^{+4}$</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>$162 : 2_7^{+1} 3^{+4}$</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>$243 : 3^{+5}$</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>$256 : 2^{+6} 4^{-1}$</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>$256 : 2^{-8}$</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>$6 : 2_1^{+1} 3^{-1}$</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>$7 : 7^{+1}$</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>$8 : 8^{+1}$</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>$4 : 2^{+2}$</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Finally: Simple lattices

Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature (2, n).
Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
Therefore, there are exactly 84 isomorphism classes of simple lattices of signature (2, n) for n ≥ 2.

Todo: n = 1.
Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature \((2, n)\).
Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature $(2, n)$.
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature \((2, n)\).
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
- Therefore, there are exactly 84 isomorphism classes of simple lattices of signature \((2, n)\) for \(n \geq 2\).
Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature \((2, n)\).
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
- Therefore, there are exactly 84 isomorphism classes of simple lattices of signature \((2, n)\) for \(n \geq 2\).
- Todo: \(n = 1\).
Thank you for your attention.