Lattices with many Borcherds products Stephan Ehlen

joint work with Jan Bruinier (Darmstadt) and Eberhard Freitag (Heidelberg)

Explicit theory of Automorphic forms

24-28 March 2014 Tongji University Shanghai, China

Introduction and Motivation		
● ○ ○○○○○		
Finite quadratic modules		

Introduction and Motivation		
Finite guadratic modules		

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z} -valued quadratic form Q is called a *finite quadratic module* (fqm).

Introduction and Motivation		
Finite quadratic modules		

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z} -valued quadratic form Q is called a *finite quadratic module* (fqm).

▶ We write $(\mu, \nu) = Q(\mu + \nu) - Q(\mu) - Q(\nu)$ for the associated bilinear form.

Introduction and Motivation		
Finite guadratic modules		

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z} -valued quadratic form Q is called a *finite quadratic module* (fqm).

- We write $(\mu, \nu) = Q(\mu + \nu) Q(\mu) Q(\nu)$ for the associated bilinear form.
- The *level* of *M* is the smallest positive integer N ∈ Z_{>0}, such that N · Q(µ) = 0 ∈ Q/Z for all µ ∈ M.

Introduction and Motivation		
Einite quadratic modules		

Definition

A pair $\mathcal{M} = (M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q}/\mathbb{Z} -valued quadratic form Q is called a *finite quadratic module* (fqm).

- ▶ We write $(\mu, \nu) = Q(\mu + \nu) Q(\mu) Q(\nu)$ for the associated bilinear form.
- ► The *level* of \mathcal{M} is the smallest positive integer $N \in \mathbb{Z}_{>0}$, such that $N \cdot Q(\mu) = 0 \in \mathbb{Q}/\mathbb{Z}$ for all $\mu \in M$.
- The signature $sig(\mathcal{M}) \pmod{8}$ is defined via

$$\frac{1}{\sqrt{|M|}}\sum_{\mu\in M}e(Q(\mu))=e\left(\frac{\operatorname{sig}(\mathcal{M})}{8}\right).$$

Here, $e(x) = e^{2\pi i x}$.

Introduction and Motivation		
000000		
Finite guadratic modules		

Introduction and Motivation		
Finite quadratic modules		

• Let (L, Q) be an even lattice

Introduction and Motivation		
Finite quadratic modules		

- Let (L, Q) be an even lattice
- ▶ and let $L' = \{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}$ be the dual lattice.

Introduction and Motivation		
Finite quadratic modules		

- Let (L, Q) be an even lattice
- ▶ and let $L' = \{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}$ be the dual lattice.
- ▶ Then the pair $\mathcal{M}_L = (L'/L, Q \pmod{\mathbb{Z}})$ is a finite quadratic module.

Introduction and Motivation		
Finite quadratic modules		

- Let (L, Q) be an even lattice
- ▶ and let $L' = \{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}$ be the dual lattice.
- ▶ Then the pair $\mathcal{M}_L = (L'/L, Q \pmod{\mathbb{Z}})$ is a finite quadratic module.
- Every fqm can be obtained this way.

Introduction and Motivation		
Finite quadratic modules		

- Let (L,Q) be an even lattice
- ▶ and let $L' = \{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L : (v, \lambda) \in \mathbb{Z}\}$ be the dual lattice.
- ▶ Then the pair $\mathcal{M}_L = (L'/L, Q \pmod{\mathbb{Z}})$ is a finite quadratic module.
- Every fqm can be obtained this way.
- ▶ If the signature of *L* is (b^+, b^-) , we have by Milgram's formula that $sig(\mathcal{M}_L) \equiv b^+ b^- \pmod{8}$.

Introduction and Motivation		
000000		
The Weil representation		

Introduction and Motivation		
The Weil representation		

• Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

Introduction and Motivation		
The Weil representation		

• Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

$$\mathsf{Mp}_2(\mathbb{Z}) = \begin{cases} (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ \phi \colon \mathbb{H} \to \mathbb{C}, \ \phi^2(\tau) = c\tau + d \end{cases}.$$

Introduction and Motivation		
The Weil representation		

• Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

$$\mathsf{Mp}_2(\mathbb{Z}) = \begin{cases} (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ \phi \colon \mathbb{H} \to \mathbb{C}, \ \phi^2(\tau) = c\tau + d \end{cases}.$$

▶ $Mp_2(\mathbb{Z})$ is generated by

$$S = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \quad T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right).$$

Introduction and Motivation		
The Weil representation		

• Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

$$\mathsf{Mp}_2(\mathbb{Z}) = \begin{cases} (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ \phi \colon \mathbb{H} \to \mathbb{C}, \ \phi^2(\tau) = c\tau + d \end{cases}.$$

▶ $Mp_2(\mathbb{Z})$ is generated by

$$S = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \quad T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right).$$

We have

$$\rho_{\mathcal{M}}(T)\mathfrak{e}_{\mu}=e(-Q(\mu))\mathfrak{e}_{\mu}$$

Introduction and Motivation		
The Weil representation		

• Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[M]$.

$$\mathsf{Mp}_2(\mathbb{Z}) = \begin{cases} (A, \phi(\tau)) \mid A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ \phi \colon \mathbb{H} \to \mathbb{C}, \ \phi^2(\tau) = c\tau + d \end{cases}.$$

▶ $Mp_2(\mathbb{Z})$ is generated by

$$S = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \quad T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right).$$

We have

$$\begin{split} \rho_{\mathcal{M}}(T) \mathbf{e}_{\mu} &= e(-Q(\mu))\mathbf{e}_{\mu} \\ \rho_{\mathcal{M}}(S) \mathbf{e}_{\mu} &= \frac{e(\operatorname{sig}(\mathcal{M})/8)}{\sqrt{|M|}} \sum_{\nu \in M} \ e((\mu,\nu)) \mathbf{e}_{\nu}. \end{split}$$

Introduction and Motivation		
Vector valued modular forms		

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function.

Introduction and Motivation		
000000		
Vector valued modular forms		

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in Mp_2(\mathbb{Z})$ require the transformation property

Introduction and Motivation		
Vector valued modular forms		

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in Mp_2(\mathbb{Z})$ require the transformation property

 $f(\gamma\tau) = \phi(\tau)^{2k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau).$

Introduction and Motivation		
Vector valued modular forms		

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in Mp_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau).$$

• We write $M_{k,\mathcal{M}}$ for the space of modular forms ($c_f(n,\mu) = 0$ for n < 0),

Introduction and Motivation		
Vector valued modular forms		

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in Mp_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau).$$

- We write $M_{k,\mathcal{M}}$ for the space of modular forms ($c_f(n,\mu) = 0$ for n < 0),
- ► $S_{k,\mathcal{M}}$ for the subspace of cusp forms $(c_f(n,\mu) = 0 \text{ for all } \mu \in M \text{ with } Q(\mu) = 0),$

Introduction and Motivation		
Vector valued modular forms		

Let $\mathcal{M} = (M, Q)$ be a fqm and let $f : \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in Mp_2(\mathbb{Z})$ require the transformation property

$$f(\gamma \tau) = \phi(\tau)^{2k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau).$$

- We write $M_{k,\mathcal{M}}$ for the space of modular forms ($c_f(n,\mu) = 0$ for n < 0),
- ► $S_{k,\mathcal{M}}$ for the subspace of cusp forms $(c_f(n,\mu) = 0 \text{ for all } \mu \in M \text{ with } Q(\mu) = 0),$
- ▶ and $M_{k,\mathcal{M}}^!$: weakly holomorphic modular forms $(c_f(n,\mu) = 0 \text{ for } n < n_0 \in \mathbb{Z}).$

Introduction and Motivation		
0000000		
Boreborde producte		

Introduction and Motivation		
Borcherds products		

• Let *L* be an even lattice of signature (2, n), $n \ge 1$.

Introduction and Motivation		
0000000		
Borcherds products		

- Let *L* be an even lattice of signature (2, n), $n \ge 1$.
- Borcherds lift:

$$f \in M^!_{k,\mathcal{M}_L(-1)} \longrightarrow \Psi(z,f),$$

Introduction and Motivation		
Borcherds products		

- Let *L* be an even lattice of signature (2, n), $n \ge 1$.
- Borcherds lift:

$$f \in M^!_{k,\mathcal{M}_L(-1)} \longrightarrow \Psi(z,f),$$

▶ where k = 1 - n/2 and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_L \subset O(L)$.

Introduction and Motivation		
Borcherds products		

- Let *L* be an even lattice of signature (2, n), $n \ge 1$.
- Borcherds lift:

$$f \in M^!_{k,\mathcal{M}_L(-1)} \longrightarrow \Psi(z,f),$$

- ▶ where k = 1 n/2 and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_L \subset O(L)$.
- The weight of $\Psi(z, f)$ is $c_f(0, 0)/2$

Introduction and Motivation			
Borcherds products	0	0000000	000000000

- Let *L* be an even lattice of signature $(2, n), n \ge 1$.
- Borcherds lift:

$$f \in M^!_{k,\mathcal{M}_L(-1)} \longrightarrow \Psi(z,f),$$

- ▶ where k = 1 n/2 and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_L \subset O(L)$.
- The weight of $\Psi(z, f)$ is $c_f(0, 0)/2$
- and we have

$$\operatorname{div}(f) = \sum_{\mu \in L'/L} \sum_{n < 0} c_f(n, \mu) H(n, \mu),$$

for $H(n,\mu)$ the Heegner divisor of index (n,μ) .

Introduction and Motivation		
Simple lattices		

Introduction and Motivation		
Simple lattices		

The existence of a Borcherds product with a given divisor

$$\sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) H(n, \mu)$$

with $c(n,\mu) \in \mathbb{Z}$, depends on the existence of $f \in M^!_{1-n/2,\mathcal{M}_L(-1)}$ with

Introduction and Motivation		
Simple lattices		

The existence of a Borcherds product with a given divisor

$$\sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) H(n, \mu)$$

with $c(n,\mu) \in \mathbb{Z}$, depends on the existence of $f \in M^!_{1-n/2,\mathcal{M}_L(-1)}$ with

$$f = \sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) e(n\tau) + \text{ higher order terms.}$$

Obstructions for the existence of such an f:

Introduction and Motivation		
Simple lattices		

The existence of a Borcherds product with a given divisor

$$\sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) H(n, \mu)$$

with $c(n,\mu)\in\mathbb{Z},$ depends on the existence of $f\in M^!_{1-n/2,\mathcal{M}_L(-1)}$ with

$$f = \sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) e(n\tau) + \text{ higher order terms.}$$

▶ Obstructions for the existence of such an *f*:

$$\triangleright \ c(n,-\mu) = c(n,\mu),$$

Introduction and Motivation		
Simple lattices		

The existence of a Borcherds product with a given divisor

$$\sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) H(n, \mu)$$

with $c(n,\mu) \in \mathbb{Z}$, depends on the existence of $f \in M^!_{1-n/2,\mathcal{M}_L(-1)}$ with

$$f = \sum_{\mu \in L'/L} \sum_{n < 0} c(n, \mu) e(n\tau) + \text{ higher order terms.}$$

Obstructions for the existence of such an f:

$$c(n,-\mu) = c(n,\mu),$$

▶ for every $g \in S_{1+n/2, \mathcal{M}_L}$, we have

$$\sum_{\mu \in L'/L} \sum_{n < 0} c_f(n, \mu) c_g(-n, \mu) = 0.$$

Introduction and Motivation		
0000000		
Simple lattices		
Introduction and Motivation		
-----------------------------	--	--
000000		
Simple lattices		

Simple lattices

► Therefore, if $S_{1+n/2,\mathcal{M}_L(-1)} = \{0\}$, then every principal part with satisfying $c(n,-\mu) = c(n,\mu)$ occurs.

Introduction and Motivation		
Simple lattices		

Simple lattices

- ▶ Therefore, if $S_{1+n/2,\mathcal{M}_L(-1)} = \{0\}$, then every principal part with satisfying $c(n,-\mu) = c(n,\mu)$ occurs.
- We call a lattice of signature (2, n) simple if $S_{1+n/2, \mathcal{M}_L} = \{0\}$.

Introduction and Motivation		
Simple lattices		

Simple lattices

- ▶ Therefore, if $S_{1+n/2,\mathcal{M}_L(-1)} = \{0\}$, then every principal part with satisfying $c(n,-\mu) = c(n,\mu)$ occurs.
- We call a lattice of signature (2, n) simple if $S_{1+n/2, \mathcal{M}_L} = \{0\}$.
- Goal: Classify all isomorphism classes of simple lattices.

	Lower bounds for the dimension	
The dimension formula		

	Lower bounds for the dimension	
The dimension formula		

• Let $k \in \frac{1}{2}\mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.

	Lower bounds for the dimension • 	
The dimension formula		

- Let $k \in \frac{1}{2}\mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.
- If $2k \not\equiv sig(\mathcal{M}) \pmod{2}$, then $M_{k,\mathcal{M}} = \{0\}$.

	Lower bounds for the dimension	
The dimension formula		

- Let $k \in \frac{1}{2}\mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.
- If $2k \not\equiv sig(\mathcal{M}) \pmod{2}$, then $M_{k,\mathcal{M}} = \{0\}$.
- Assume that $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$. Let $W = \operatorname{span}\{\mathfrak{e}_{\mu} + \mathfrak{e}_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.

	Lower bounds for the dimension		
0000000	•	0000000	0000000000
The dimension formula			

- Let $k \in \frac{1}{2}\mathbb{Z}$ and let $\mathcal{M} = (M, Q)$ be an fqm.
- If $2k \not\equiv sig(\mathcal{M}) \pmod{2}$, then $M_{k,\mathcal{M}} = \{0\}$.
- Assume that $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$. Let $W = \operatorname{span}\{\mathfrak{e}_{\mu} + \mathfrak{e}_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- ► For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e(\nu_j)$ for j = 1, ..., d and $0 \le \nu_j < 1$, we write $\alpha(A) = \nu_1 + ... + \nu_d$.

	Lower bounds for the dimension	
The dimension formula		

- Assume that $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$. Let $W = \operatorname{span}\{\mathfrak{e}_{\mu} + \mathfrak{e}_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e(\nu_j)$ for $j = 1, \ldots, d$ and $0 \le \nu_i < 1$, we write $\alpha(A) = \nu_1 + \ldots + \nu_d$.

Theorem

$$\dim M_{k,\mathcal{M}} = d + \frac{dk}{12} - \alpha \left(e(k/4)\rho(S) \right) - \alpha \left((e(k/6)\rho(ST))^{-1} \right) - \alpha(T)$$

	Lower bounds for the dimension	
The dimension formula		

- Assume that $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$. Let $W = \operatorname{span}\{\mathfrak{e}_{\mu} + \mathfrak{e}_{-\mu}\}$ and $d = \dim W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e(\nu_j)$ for $j = 1, \ldots, d$ and $0 \le \nu_j < 1$, we write $\alpha(A) = \nu_1 + \ldots + \nu_d$.

Theorem

▶ We have

$$\dim M_{k,\mathcal{M}} = d + \frac{dk}{12} - \alpha \left(e(k/4)\rho(S) \right) - \alpha \left((e(k/6)\rho(ST))^{-1} \right) - \alpha(T)$$

+
$$\begin{cases} 0, & \text{if } k \neq 2, \\ \dim M_{0,\mathcal{M}(-1)}, & \text{if } k = 2. \end{cases}$$

	Estimates ●000000	
Trivial estimates		

	Estimates •••••••	
Trivial estimates		

• Note that $d = |M/\{\pm 1\}|$.

	Estimates •••••••	
Trivial estimates		

- Note that $d = |M/\{\pm 1\}|$.
- We have

$$\alpha_1 = \alpha \left(e(k/4)\rho(S) \right) \le \frac{1}{2}d,$$

$$\alpha_2 = \alpha \left((e(k/6)\rho(ST))^{-1} \right) \le \frac{2}{3}d,$$

	Estimates •••••••	
Trivial estimates		

- Note that $d = |M/\{\pm 1\}|$.
- We have

$$\alpha_1 = \alpha \left(e(k/4)\rho(S) \right) \le \frac{1}{2}d,$$

$$\alpha_2 = \alpha \left((e(k/6)\rho(ST))^{-1} \right) \le \frac{2}{3}d,$$

• Let
$$\alpha_3 = \rho(T)$$
 and $\alpha_4 = |\{\mu \in M / \{\pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|.$

	Estimates •••••••	
Trivial estimates		

- Note that $d = |M/\{\pm 1\}|$.
- We have

$$\alpha_1 = \alpha \left(e(k/4)\rho(S) \right) \le \frac{1}{2}d,$$

$$\alpha_2 = \alpha \left((e(k/6)\rho(ST))^{-1} \right) \le \frac{2}{3}d,$$

• Let
$$\alpha_3 = \rho(T)$$
 and $\alpha_4 = |\{\mu \in M / \{\pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|.$

$$\alpha_3 + \alpha_4 \le d.$$

	Estimates O●○○○○○	
Trivial estimates		

Corollary

If k > 14 and $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$, then $S_{k,\mathcal{M}} \neq \{0\}$.

	Estimates O●○○○○○	
Trivial estimates		

Corollary

If k > 14 and $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$, then $S_{k,\mathcal{M}} \neq \{0\}$.

Remark

This bound is sharp! (We have $S_{14}(SL_2(\mathbb{Z})) = \{0\}$.)

	Estimates ○○●○○○○	
Better estimates		

Definition

Let N be the level of \mathcal{M} . For $s \in \mathbb{R}$ define the divisor sum

$$\sigma(s, \mathcal{M}) = \sum_{a|N} a^s |M[a]|.$$

	Estimates ○○●○○○○	
Better estimates		

Definition

Let N be the level of \mathcal{M} . For $s \in \mathbb{R}$ define the divisor sum

$$\sigma(s, \mathcal{M}) = \sum_{a|N} a^s |M[a]|.$$

	Estimates 000000	
Better estimates		

Definition

Let N be the level of \mathcal{M} . For $s \in \mathbb{R}$ define the divisor sum

$$\sigma(s, \mathcal{M}) = \sum_{a|N} a^s |M[a]|.$$

▶ We have

$$\sigma(s, \mathcal{M}) \le \sqrt{\frac{2|M|}{N}} \sigma_{s+1/2}(N)$$

	Estimates ○○O●OOO	
Better estimates		

Proposition

	Estimates ○○○●○○○○	
Better estimates		

Proposition

►
$$|\alpha_1 - d/4| \le \frac{1}{4}\sqrt{|M[2]|},$$

	Estimates ○○○●○○○	
Better estimates		

Proposition

•
$$|\alpha_1 - d/4| \le \frac{1}{4}\sqrt{|M[2]|},$$

• $|\alpha_2 - d/3| \le \frac{1}{3\sqrt{3}}\left(1 + \sqrt{|M[3]|}\right)$

	Estimates ○○○●○○○○	
Better estimates		

Proposition

$$|\alpha_1 - d/4| \le \frac{1}{4}\sqrt{|M[2]|}, |\alpha_2 - d/3| \le \frac{1}{3\sqrt{3}} \left(1 + \sqrt{|M[3]|}\right), \alpha_4 \le \frac{|M[2]|}{2} + \frac{\sqrt{|M|}}{2}\sigma(-1, \mathcal{M}),$$

	Estimates ○○○●○○○○	
Better estimates		

Proposition

$$\begin{aligned} &|\alpha_1 - d/4| \le \frac{1}{4}\sqrt{|M[2]|}, \\ &|\alpha_2 - d/3| \le \frac{1}{3\sqrt{3}}\left(1 + \sqrt{|M[3]|}\right), \\ &|\alpha_4 \le \frac{|M[2]|}{2} + \frac{\sqrt{|M|}}{2}\sigma(-1,\mathcal{M}), \\ &|\alpha_3 - d/2 + \alpha_4/2| \le \frac{|M[2]|}{8} + \alpha_5/2 \end{aligned}$$

	Estimates ○○○●○○○○	
Better estimates		

Proposition

$$|\alpha_{1} - d/4| \leq \frac{1}{4}\sqrt{|M[2]|},$$

$$|\alpha_{2} - d/3| \leq \frac{1}{3\sqrt{3}}\left(1 + \sqrt{|M[3]|}\right),$$

$$\alpha_{4} \leq \frac{|M[2]|}{2} + \frac{\sqrt{|M|}}{2}\sigma(-1,\mathcal{M}),$$

$$|\alpha_{3} - d/2 + \alpha_{4}/2| \leq \frac{|M[2]|}{8} + \alpha_{5}/2$$

$$\alpha_{5} \leq \frac{\sqrt{|M|}}{\pi}(3/2 + \ln(N))\left(\sigma(-1,\mathcal{M}) - \frac{\sqrt{|M|}}{N}\right)$$

	Estimates ○○○○●○○	
Better estimates		

	Estimates 0000000	
Better estimates		

Theorem (BEF)

For every $\varepsilon > 0$ there is a C > 0, such that

$$\dim S_{k,\mathcal{M}} \ge d\left(\frac{k-1}{12} - CN^{\varepsilon - 1/2}\right)$$

	0000000	
B (1) (1) (1)		

Theorem (BEF)

For every $\varepsilon > 0$ there is a C > 0, such that

$$\dim S_{k,\mathcal{M}} \ge d\left(\frac{k-1}{12} - CN^{\varepsilon - 1/2}\right).$$

Corollary

Let $r \in \mathbb{Z}_{>0}$. There exist only finitely many isomorphism classes of finite quadratic modules \mathcal{M} with minimal number of generators r, such that $S_{k,\mathcal{M}} = \{0\}$ for some $k \geq 2$ with $k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$.

	0000000	
B (1) (1) (1)		

Theorem (BEF)

For every $\varepsilon > 0$ there is a C > 0, such that

$$\dim S_{k,\mathcal{M}} \ge d\left(\frac{k-1}{12} - CN^{\varepsilon - 1/2}\right).$$

Corollary

Let $r \in \mathbb{Z}_{>0}$. There exist only finitely many isomorphism classes of finite quadratic modules \mathcal{M} with minimal number of generators r, such that $S_{k,\mathcal{M}} = \{0\}$ for some $k \geq 2$ with $k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$.

Problem for our application: if we make C explicit, the bounds on N we can obtain are huge.

	Estimates 0000000	
Better estimates		

Remark

March 26, 2014	FB 4 TUD	Stephan Ehlen	15
----------------	----------	---------------	----

	Estimates ○○○○○●○	
Better estimates		

Remark

 \triangleright Bounding *r* is necessary.

	Estimates ○○○○○●○	
Better estimates		

Remark

- Bounding r is necessary.
- ► Consider the finite quadratic module \mathcal{M} given by $M = (\mathbb{Z}/3\mathbb{Z})^{2n+1}$ and $Q(x) = \frac{1}{3}(x_1^2 + \ldots + x_{2n}^2 (-1)^n x_{2n+1}^2).$

	Estimates ○○○○○●○	
Better estimates		

Remark

- Bounding r is necessary.
- Consider the finite quadratic module \mathcal{M} given by $M = (\mathbb{Z}/3\mathbb{Z})^{2n+1}$ and $Q(x) = \frac{1}{3}(x_1^2 + \ldots + x_{2n}^2 (-1)^n x_{2n+1}^2).$
- We have r = 2n + 1, N = 3, sig(M) = 6 and

$$S_{3,\mathcal{M}} = \{0\}.$$

	Estimates ○○○○○○●	
Better estimates		

Computational difficulty

	Estimates	
Better estimates		

Computational difficulty

For $\varepsilon = 1/5$ we can get for instance C = 18.7 and this would give $N \ge 6.84 \cdot 10^7$ for k = 2.
	Estimates ○○○○○○●	
Better estimates		

- For $\varepsilon = 1/5$ we can get for instance C = 18.7 and this would give $N \ge 6.84 \cdot 10^7$ for k = 2.
- ▶ This would at least result in a search for $|A| \le 2.19 \cdot 10^{31}$.

	Estimates	
Better estimates		

- For $\varepsilon = 1/5$ we can get for instance C = 18.7 and this would give $N \ge 6.84 \cdot 10^7$ for k = 2.
- ▶ This would at least result in a search for $|A| \le 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....

	Estimates	
Better estimates		

- For $\varepsilon = 1/5$ we can get for instance C = 18.7 and this would give $N \ge 6.84 \cdot 10^7$ for k = 2.
- ▶ This would at least result in a search for $|A| \le 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
- and an explicit formula for $\dim M_{0,\mathcal{M}(-1)}$!

	Estimates	
Better estimates		

- For $\varepsilon = 1/5$ we can get for instance C = 18.7 and this would give $N \ge 6.84 \cdot 10^7$ for k = 2.
- This would at least result in a search for $|A| \le 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
- and an explicit formula for $\dim M_{0,\mathcal{M}(-1)}$!
- We did not try to do this.

		Our approach to the problem
Anisotropic modules		

		Our approach to the problem
Anisotropic modules		

Definition

A finite quadratic module $\mathcal{M} = (M, Q)$ is called *isotropic* if there exists a $m \in M$, $m \neq 0$ with $Q(m) = 0 \in \mathbb{Q}/\mathbb{Z}$. Otherwise, \mathcal{M} is called *anisotropic*.

		Our approach to the problem
Anisotropic modules		

Definition

A finite quadratic module $\mathcal{M} = (M, Q)$ is called *isotropic* if there exists a $m \in M$, $m \neq 0$ with $Q(m) = 0 \in \mathbb{Q}/\mathbb{Z}$. Otherwise, \mathcal{M} is called *anisotropic*.

Example

The anisotropic fqm's of odd prime level p are

$$\left(\mathbb{Z}/p\mathbb{Z}, \frac{ax^2}{p}\right), \ a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$

and

$$\left((\mathbb{Z}/p\mathbb{Z})^2, \frac{x^2 - ay^2}{p} \right), \ \left(\frac{a}{p} \right) = -1.$$

		Our approach to the problem
Anisotropic modules		

Definition

A finite quadratic module $\mathcal{M} = (M, Q)$ is called *isotropic* if there exists a $m \in M$, $m \neq 0$ with $Q(m) = 0 \in \mathbb{Q}/\mathbb{Z}$. Otherwise, \mathcal{M} is called *anisotropic*.

Example

The anisotropic fqm's of odd prime level p are

$$\left(\mathbb{Z}/p\mathbb{Z}, \frac{ax^2}{p}\right), \ a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$

and

$$\left((\mathbb{Z}/p\mathbb{Z})^2, \frac{x^2 - ay^2}{p} \right), \ \left(\frac{a}{p} \right) = -1.$$

• If \mathcal{M} is anisotropic, $N = 2^t N'$, $t \in \{0, 1, 2, 3\}$ and N' is odd and squarefree.

		Our approach to the problem
A significant second states		

An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M}=(M,Q)$ be an anisotropic fqm. Assume for simplicity that |M| is odd.

		Our approach to the problem
A REAL PROPERTY AND A REAL		

An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M}=(M,Q)$ be an anisotropic fqm. Assume for simplicity that |M| is odd.Define

$$R = \prod_{\substack{p \mid N \\ \text{ord}_p(|M|) = 2}} p.$$

Then

$$\alpha_5 = -\sum_{\substack{d|N\\d(d,R)}} \epsilon(d)(N/d,R)H(-d(d,R)),$$

		Our approach to the problem
Anisotropic modules		

An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M} = (M, Q)$ be an anisotropic fqm. Assume for simplicity that |M| is odd.Define

$$R = \prod_{\substack{p \mid N \\ \text{ord}_p(|M|) = 2}} p.$$

Then

$$\alpha_5 = -\sum_{\substack{d|N\\d(d,R)}} \epsilon(d)(N/d,R)H(-d(d,R)),$$

where $|\epsilon(d)| = 1$ and H(-D) is the number of primitive positive definite quadratic forms of discriminant -D for D > 4, H(-3) = 1/3, H(-4) = 1/4.

		Our approach to the problem
Anisotropic modules		

		Our approach to the problem
Anisotropic modules		

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.

		Our approach to the problem
Anisotropic modules		

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.

Corollary

Let \mathcal{M} be an anisotropic fqm.

		Our approach to the problem
Anisotropic modules		

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.

Corollary

Let \mathcal{M} be an anisotropic fqm. Then

dim
$$S_{k,\mathcal{M}} \ge \frac{(|A|+1)(k-1)}{24} - 3 - 0.86 |A|^{5/8} \ln(2|A|)$$

		Our approach to the problem
Anisotropic modules		

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.

Corollary

Let \mathcal{M} be an anisotropic fqm. Then

dim
$$S_{k,\mathcal{M}} \ge \frac{(|A|+1)(k-1)}{24} - 3 - 0.86 |A|^{5/8} \ln(2|A|)$$

Corollary

If $\mathcal{M} = (M, Q)$ is anisotropic and $2k \equiv -\operatorname{sig}(\mathcal{M}) \pmod{4}$ with $|M| \ge 5.3 \cdot 10^6$, then $S_{k,\mathcal{M}} \neq \{0\}$.

0000000 0 0000000 0 000000 0 000000 0 0000				Our approach to the problem
--	--	--	--	-----------------------------

k	signature	k-simple finite quadratic modules	count
2	0	$1^{+1}, 5^{-1}, 2_1^{+1}4_7^{+1}, 3^{+1}11^{-1}, 2^{-2}5^{+1}, 2_2^{+2}3^{+1},$	13
		$2_6^{+2}3^{-1}, 13^{-1}, 2_6^{+2}7^{+1}, 17^{+1}, 3^{-1}7^{-1},$	
		$2_1^{+1}4_1^{+1}3^{+1}, 2_6^{+2}3^{+1}5^{+1}$	
2	4	$2^{-2}, 3^{+2}, 5^{+1}, 5^{-2}, 2_1^{+1}4_3^{-1}, 3^{-1}11^{-1}, 2^{-2}5^{-1},$	15
		$2^{+2}_{2}3^{-1}, 2^{+2}_{6}3^{+1}, 13^{+1}, 2^{+2}_{2}7^{+1}, 17^{-1},$	
		$3^{+1}7^{-1}, 2_1^{+1}4_1^{+1}3^{-1}, 2_2^{+2}3^{-1}5^{-1}$	
$\frac{5}{2}$	3	$2_3^{+3}, 4_3^{-1}, 4_3^{-1}5^{-1}, 2_1^{+1}3^{-1}, 2_7^{+1}3^{+2}, 2_1^{+1}7^{+1},$	12
		$2_1^{+1}11^{-1}, 4_1^{+1}7^{+1}, 2_7^{+1}5^{+1}, 4_1^{+1}3^{-1}, 4_5^{-1}3^{+1},$	
		$2^{+1}_{1}3^{-1}5^{-1}_{1}$	
$\frac{5}{2}$	7	$2_7^{+1}, 4_7^{+1}, 2_1^{+1}3^{+1}$	3
	1	1	

k	signature	k-simple finite quadratic modules	count
3	2	$3^{-1}, 2^{+2}_{2}, 2^{-2}3^{+1}, 7^{+1}, 2^{+1}_{1}4^{+1}_{1}, 11^{-1},$	10
		$3^{+1}5^{+1}$, $3^{-1}5^{-1}$, $2^{+2}_25^{-1}$, 23^{+1}	
3	6	3+1	1
$\frac{7}{2}$	1	$2_1^{+1}, 4_1^{+1}, 2_7^{+1}3^{-1}, 2_1^{+1}5^{-1}, 4_3^{-1}3^{+1}$	5
$\frac{7}{2}$	5	4_5^{-1}	1
4	0	$1^{+1}, 5^{-1}$	2
4	4	$5^{+1}, 2^{-2}$	2
$\frac{9}{2}$	3	$4_3^{-1}, 2_1^{+1}3^{-1}$	2
$\frac{9}{2}$	7	2_7^{+1}	1

k	signature	k-simple finite quadratic modules	count
5	2	$3^{-1}, 2^{+2}_{2}, 7^{+1}$	2
5	6	3^{+1}	1
$\frac{11}{2}$	1	$2_1^{+1}, 4_1^{+1}$	2
6	0	1+1	1
7	2	3^{-1}	1
$\frac{15}{2}$	1	2_1^{+1}	1
8	0	1+1	1
10	0	1+1	1
14	0	1+1	1

		Our approach to the problem	
Anisotropic modules			

k	signature	k-simple finite quadratic modules	count

Anisotropic modules		

List of all k-simple anisotropic fqm's

▶ In total 78 pairs (\mathcal{M}, k)

Anisotropic modules

- ▶ In total 78 pairs (\mathcal{M}, k)
- and 50 isomorphism classes of modules.

		Our approach to the problem
The algorithm		

		Our approach to the problem
The algorithm		

▶ Let $\mathcal{M} = (M, Q)$ be an fqm.

		Our approach to the problem
he algorithm		

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.

		Our approach to the problem
The algorithm		

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then M/U := U[⊥]/U defines an fqm of order |M| / |U|² and of the same signature.

		Our approach to the problem
The algorithm		

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then M/U := U[⊥]/U defines an fqm of order |M| / |U|² and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^{\perp}/U is anisotropic.

		Our approach to the problem
The algorithm		

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then M/U := U[⊥]/U defines an fqm of order |M| / |U|² and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^{\perp}/U is anisotropic.
- We have an inclusion (induction from isotropic subgroups)

$$S_{k,\mathcal{M}/U} \hookrightarrow S_{k,\mathcal{M}}.$$

		Our approach to the problem
The algorithm		

- Let $\mathcal{M} = (M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then M/U := U[⊥]/U defines an fqm of order |M| / |U|² and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^{\perp}/U is anisotropic.
- We have an inclusion (induction from isotropic subgroups)

$$S_{k,\mathcal{M}/U} \hookrightarrow S_{k,\mathcal{M}}.$$

• Therefore, if $S_{k,\mathcal{M}/U} \neq \{0\}$, then $S_{k,\mathcal{M}} \neq 0$.

		Our approach to the problem
The algorithm		

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$

		Our approach to the problem
The algorithm		

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$

		Our approach to the problem
The algorithm		

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$

► Nice property:

$$B(\mathcal{M}, m \cdot n) = \bigcup_{\mathcal{N} \in B(\mathcal{M}, m)} B(\mathcal{N}, n).$$

		Our approach to the problem
The algorithm		

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$B(\mathcal{M}, n) = \{ \mathcal{N} \mid \exists U \subset \mathcal{N}, \mathcal{N}/U = \mathcal{M}, |U| = n^2 \}.$$

Nice property:

$$B(\mathcal{M}, m \cdot n) = \bigcup_{\mathcal{N} \in B(\mathcal{M}, m)} B(\mathcal{N}, n).$$

▶ Moreover, we can get very good bounds on primes p, such that for all $\mathcal{N} \in B(\mathcal{M}, p)$: dim $S_{k,\mathcal{N}} > 0$. (The largest one is 37 for k = 2)

		Our approach to the problem
The algorithm		

		Our approach to the problem
The algorithm		

• Example: signature 6, r = 6, k = 3. (corresponds to signature (2, 4))

		Our approach to the problem
Statistics		

Statistics

		Our approach to the problem
Statistics		

Statistics

▶ There are 90 finite quadratic modules of signature 2 - n for $n \ge 2$ with minimal number of generators $\le 2 + n$, such that $S_{1+n/2,\mathcal{M}} = \{0\}$.

n	number	largest order
2	47	$625:5^{+4}$
3	16	$162:2^{+1}_{7}3^{+4}$
4	6	$243:3^{+5}$
5	4	$256:2^{+6}4_5^{-1}$
6	5	$256:2^{-8}$
7	2	$6:2^{+1}_13^{-1}_1$
8	3	$7:7^{+1}$
9	3	$8:8^{+1}$
10	2	$4:2^{+2}$
18	1	1
$\overline{26}$	1	1

		Our approach to the problem
Statistics		

		Our approach to the problem
Statistics		

Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature (2, n).

		Our approach to the problem
Statistics		

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature (2, n).
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.

		Our approach to the problem
Statistics		

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature (2, n).
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
- ► Therefore, there are exactly 84 isomorphism classes of simple lattices of signature (2, n) for n ≥ 2.

		Our approach to the problem
Statistics		

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature (2, n).
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
- ► Therefore, there are exactly 84 isomorphism classes of simple lattices of signature (2, n) for n ≥ 2.
- ► Todo: n = 1.

Statistics

Estimates

Thank you for your attention.