Lattices with many Borcherds products Stephan Ehlen

joint work with Jan Bruinier (Darmstadt) and Eberhard Freitag (Heidelberg)

Explicit theory of Automorphic forms

24-28 March 2014
Tongji University
Shanghai, China
\qquad
\qquad
\qquad
.
.
\qquad
\qquad

Finite quadratic modules

Definition

A pair $\mathcal{M}=(M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q} / \mathbb{Z}-valued quadratic form Q is called a finite quadratic module (fqm).

Finite quadratic modules

Definition

A pair $\mathcal{M}=(M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q} / \mathbb{Z}-valued quadratic form Q is called a finite quadratic module (fqm).

- We write $(\mu, \nu)=Q(\mu+\nu)-Q(\mu)-Q(\nu)$ for the associated bilinear form.

Finite quadratic modules

Definition

A pair $\mathcal{M}=(M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q} / \mathbb{Z}-valued quadratic form Q is called a finite quadratic module (fqm).

- We write $(\mu, \nu)=Q(\mu+\nu)-Q(\mu)-Q(\nu)$ for the associated bilinear form.
- The level of \mathcal{M} is the smallest positive integer $N \in \mathbb{Z}_{>0}$, such that $N \cdot Q(\mu)=0 \in \mathbb{Q} / \mathbb{Z}$ for all $\mu \in M$.

Finite quadratic modules

Definition

A pair $\mathcal{M}=(M, Q)$ consisting of a finite abelian group M and a non-degenerate \mathbb{Q} / \mathbb{Z}-valued quadratic form Q is called a finite quadratic module (fqm).

- We write $(\mu, \nu)=Q(\mu+\nu)-Q(\mu)-Q(\nu)$ for the associated bilinear form.
- The level of \mathcal{M} is the smallest positive integer $N \in \mathbb{Z}_{>0}$, such that $N \cdot Q(\mu)=0 \in \mathbb{Q} / \mathbb{Z}$ for all $\mu \in M$.
- The signature $\operatorname{sig}(\mathcal{M})(\bmod 8)$ is defined via

$$
\frac{1}{\sqrt{|M|}} \sum_{\mu \in M} e(Q(\mu))=e\left(\frac{\operatorname{sig}(\mathcal{M})}{8}\right)
$$

Here, $e(x)=e^{2 \pi i x}$.
\qquad
．

號 ζ

2．＿
\qquad
\qquad － － （ （ C
\qquad
\qquad
ll

```
．
```

.
-
－ －
都

－

\qquad （ （ － $-$

Example

- Let (L, Q) be an even lattice

Example

- Let (L, Q) be an even lattice
- and let $L^{\prime}=\left\{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L:(v, \lambda) \in \mathbb{Z}\right\}$ be the dual lattice.

Example

- Let (L, Q) be an even lattice
- and let $L^{\prime}=\left\{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L:(v, \lambda) \in \mathbb{Z}\right\}$ be the dual lattice.
- Then the pair $\mathcal{M}_{L}=\left(L^{\prime} / L, Q(\bmod \mathbb{Z})\right)$ is a finite quadratic module.

Example

- Let (L, Q) be an even lattice
- and let $L^{\prime}=\left\{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L:(v, \lambda) \in \mathbb{Z}\right\}$ be the dual lattice.
- Then the pair $\mathcal{M}_{L}=\left(L^{\prime} / L, Q(\bmod \mathbb{Z})\right)$ is a finite quadratic module.
- Every fqm can be obtained this way.

Example

- Let (L, Q) be an even lattice
- and let $L^{\prime}=\left\{v \in L \otimes_{\mathbb{Q}} \mathbb{Q} \mid \forall \lambda \in L:(v, \lambda) \in \mathbb{Z}\right\}$ be the dual lattice.
- Then the pair $\mathcal{M}_{L}=\left(L^{\prime} / L, Q(\bmod \mathbb{Z})\right)$ is a finite quadratic module.
- Every fqm can be obtained this way.
- If the signature of L is $\left(b^{+}, b^{-}\right)$, we have by Milgram's formula that $\operatorname{sig}\left(\mathcal{M}_{L}\right) \equiv b^{+}-b^{-}(\bmod 8)$.

The Weil representation

\square
\qquad

[^0]
The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\mathrm{Mp}_{2}(\mathbb{Z})$ on $\mathbb{C}[M]$.

The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\operatorname{Mp}_{2}(\mathbb{Z})$ on $\mathbb{C}[M]$.
- $\operatorname{Mp}_{2}(\mathbb{Z})=$ $\left\{(A, \phi(\tau)) \left\lvert\, A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})\right., \phi: \mathbb{H} \rightarrow \mathbb{C}, \phi^{2}(\tau)=c \tau+d\right\}$.

The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\mathrm{Mp}_{2}(\mathbb{Z})$ on $\mathbb{C}[M]$.
- $\mathrm{Mp}_{2}(\mathbb{Z})=$
$\left\{(A, \phi(\tau)) \left\lvert\, A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})\right., \phi: \mathbb{H} \rightarrow \mathbb{C}, \phi^{2}(\tau)=c \tau+d\right\}$.
- $\mathrm{Mp}_{2}(\mathbb{Z})$ is generated by

$$
S=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right), \quad T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right) .
$$

The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\operatorname{Mp}_{2}(\mathbb{Z})$ on $\mathbb{C}[M]$.
- $\mathrm{Mp}_{2}(\mathbb{Z})=$
$\left\{(A, \phi(\tau)) \left\lvert\, A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})\right., \phi: \mathbb{H} \rightarrow \mathbb{C}, \phi^{2}(\tau)=c \tau+d\right\}$.
- $\mathrm{Mp}_{2}(\mathbb{Z})$ is generated by

$$
S=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right), \quad T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right) .
$$

- We have

$$
\rho_{\mathcal{M}}(T) \mathfrak{e}_{\mu}=e(-Q(\mu)) \mathfrak{e}_{\mu}
$$

The Weil representation

- Associated with \mathcal{M} is a representation $\rho_{\mathcal{M}}$ of $\operatorname{Mp}_{2}(\mathbb{Z})$ on $\mathbb{C}[M]$.
- $\operatorname{Mp}_{2}(\mathbb{Z})=$
$\left\{(A, \phi(\tau)) \left\lvert\, A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})\right., \phi: \mathbb{H} \rightarrow \mathbb{C}, \phi^{2}(\tau)=c \tau+d\right\}$.
- $\mathrm{Mp}_{2}(\mathbb{Z})$ is generated by

$$
S=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right), \quad T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right) .
$$

- We have

$$
\begin{aligned}
\rho_{\mathcal{M}}(T) \mathfrak{e}_{\mu} & =e(-Q(\mu)) \mathfrak{e}_{\mu} \\
\rho_{\mathcal{M}}(S) \mathfrak{e}_{\mu} & =\frac{e(\operatorname{sig}(\mathcal{M}) / 8)}{\sqrt{|M|}} \sum_{\nu \in M} e((\mu, \nu)) \mathfrak{e}_{\nu} .
\end{aligned}
$$

Vector valued modular forms

Let $\mathcal{M}=(M, Q)$ be a fqm and let $f: \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function.

Vector valued modular forms

Let $\mathcal{M}=(M, Q)$ be a fqm and let $f: \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \mathrm{Mp}_{2}(\mathbb{Z})$ require the transformation property

Vector valued modular forms

Let $\mathcal{M}=(M, Q)$ be a fqm and let $f: \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \mathrm{Mp}_{2}(\mathbb{Z})$ require the transformation property

$$
f(\gamma \tau)=\phi(\tau)^{2 k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau) .
$$

Vector valued modular forms

Let $\mathcal{M}=(M, Q)$ be a fqm and let $f: \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \mathrm{Mp}_{2}(\mathbb{Z})$ require the transformation property

$$
f(\gamma \tau)=\phi(\tau)^{2 k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau)
$$

- We write $M_{k, \mathcal{M}}$ for the space of modular forms $\left(c_{f}(n, \mu)=0\right.$ for $\left.n<0\right)$,

Vector valued modular forms

Let $\mathcal{M}=(M, Q)$ be a fqm and let $f: \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \mathrm{Mp}_{2}(\mathbb{Z})$ require the transformation property

$$
f(\gamma \tau)=\phi(\tau)^{2 k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau)
$$

- We write $M_{k, \mathcal{M}}$ for the space of modular forms $\left(c_{f}(n, \mu)=0\right.$ for $\left.n<0\right)$,
- $S_{k, \mathcal{M}}$ for the subspace of cusp forms $\left(c_{f}(n, \mu)=0\right.$ for all $\mu \in M$ with $\left.Q(\mu)=0\right)$,

Vector valued modular forms

Let $\mathcal{M}=(M, Q)$ be a fqm and let $f: \mathbb{H} \longrightarrow \mathbb{C}[\mathcal{M}]$ be a holomorphic function. For $(\gamma, \phi) \in \mathrm{Mp}_{2}(\mathbb{Z})$ require the transformation property

$$
f(\gamma \tau)=\phi(\tau)^{2 k} \rho_{\mathcal{M}}((\gamma, \phi)) f(\tau)
$$

- We write $M_{k, \mathcal{M}}$ for the space of modular forms $\left(c_{f}(n, \mu)=0\right.$ for $\left.n<0\right)$,
- $S_{k, \mathcal{M}}$ for the subspace of cusp forms ($c_{f}(n, \mu)=0$ for all $\mu \in M$ with $Q(\mu)=0$),
- and $M_{k, \mathcal{M}}^{!}$: weakly holomorphic modular forms $\left(c_{f}(n, \mu)=0\right.$ for $\left.n<n_{0} \in \mathbb{Z}\right)$.

Borcherds products

- Let L be an even lattice of signature $(2, n), n \geq 1$.

Borcherds products

- Let L be an even lattice of signature $(2, n), n \geq 1$.
- Borcherds lift:

$$
f \in M_{k, \mathcal{M}_{L}(-1)}^{\prime} \longrightarrow \Psi(z, f),
$$

Borcherds products

- Let L be an even lattice of signature $(2, n), n \geq 1$.
- Borcherds lift:

$$
f \in M_{k, \mathcal{M}_{L}(-1)}^{!} \longrightarrow \Psi(z, f),
$$

- where $k=1-n / 2$ and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_{L} \subset O(L)$.

Borcherds products

- Let L be an even lattice of signature $(2, n), n \geq 1$.
- Borcherds lift:

$$
f \in M_{k, \mathcal{M}_{L}(-1)}^{!} \longrightarrow \Psi(z, f),
$$

- where $k=1-n / 2$ and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_{L} \subset O(L)$.
- The weight of $\Psi(z, f)$ is $c_{f}(0,0) / 2$

Borcherds products

- Let L be an even lattice of signature $(2, n), n \geq 1$.
- Borcherds lift:

$$
f \in M_{k, \mathcal{M}_{L}(-1)}^{!} \longrightarrow \Psi(z, f),
$$

- where $k=1-n / 2$ and $\Psi(z, f)$ is a meromorphic modular form for a subgroup $\Gamma_{L} \subset O(L)$.
- The weight of $\Psi(z, f)$ is $c_{f}(0,0) / 2$
- and we have

$$
\operatorname{div}(f)=\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c_{f}(n, \mu) H(n, \mu)
$$

for $H(n, \mu)$ the Heegner divisor of index (n, μ).

Simple lattices

Simple lattices

- The existence of a Borcherds product with a given divisor

$$
\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) H(n, \mu)
$$

with $c(n, \mu) \in \mathbb{Z}$, depends on the existence of $f \in M_{1-n / 2, \mathcal{M}_{L}(-1)}^{!}$with

Simple lattices

- The existence of a Borcherds product with a given divisor

$$
\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) H(n, \mu)
$$

with $c(n, \mu) \in \mathbb{Z}$, depends on the existence of $f \in M_{1-n / 2, \mathcal{M}_{L}(-1)}^{!}$with

$$
f=\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) e(n \tau)+\text { higher order terms. }
$$

- Obstructions for the existence of such an f :

Simple lattices

- The existence of a Borcherds product with a given divisor

$$
\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) H(n, \mu)
$$

with $c(n, \mu) \in \mathbb{Z}$, depends on the existence of $f \in M_{1-n / 2, \mathcal{M}_{L}(-1)}^{!}$with

$$
f=\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) e(n \tau)+\text { higher order terms. }
$$

- Obstructions for the existence of such an f :
- $c(n,-\mu)=c(n, \mu)$,

Simple lattices

- The existence of a Borcherds product with a given divisor

$$
\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) H(n, \mu)
$$

with $c(n, \mu) \in \mathbb{Z}$, depends on the existence of $f \in M_{1-n / 2, \mathcal{M}_{L}(-1)}^{!}$with

$$
f=\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c(n, \mu) e(n \tau)+\text { higher order terms. }
$$

- Obstructions for the existence of such an f :
- $c(n,-\mu)=c(n, \mu)$,
- for every $g \in S_{1+n / 2, \mathcal{M}_{L}}$, we have

$$
\sum_{\mu \in L^{\prime} / L} \sum_{n<0} c_{f}(n, \mu) c_{g}(-n, \mu)=0
$$

Simple lattices

Simple lattices

- Therefore, if $S_{1+n / 2, \mathcal{M}_{L}(-1)}=\{0\}$, then every principal part with satisfying $c(n,-\mu)=c(n, \mu)$ occurs.

Simple lattices

- Therefore, if $S_{1+n / 2, \mathcal{M}_{L}(-1)}=\{0\}$, then every principal part with satisfying $c(n,-\mu)=c(n, \mu)$ occurs.
- We call a lattice of signature $(2, n)$ simple if $S_{1+n / 2, \mathcal{M}_{L}}=\{0\}$.

Simple lattices

- Therefore, if $S_{1+n / 2, \mathcal{M}_{L}(-1)}=\{0\}$, then every principal part with satisfying $c(n,-\mu)=c(n, \mu)$ occurs.
- We call a lattice of signature $(2, n)$ simple if $S_{1+n / 2, \mathcal{M}_{L}}=\{0\}$.
- Goal: Classify all isomorphism classes of simple lattices.

The dimension formula

The dimension formula

- Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M}=(M, Q)$ be an fqm.

The dimension formula

- Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M}=(M, Q)$ be an fqm.
- If $2 k \not \equiv \operatorname{sig}(\mathcal{M})(\bmod 2)$, then $M_{k, \mathcal{M}}=\{0\}$.

The dimension formula

- Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M}=(M, Q)$ be an fqm.
- If $2 k \not \equiv \operatorname{sig}(\mathcal{M})(\bmod 2)$, then $M_{k, \mathcal{M}}=\{0\}$.
- Assume that $2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$. Let $W=\operatorname{span}\left\{\mathfrak{e}_{\mu}+\mathfrak{e}_{-\mu}\right\}$ and $d=\operatorname{dim} W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.

The dimension formula

- Let $k \in \frac{1}{2} \mathbb{Z}$ and let $\mathcal{M}=(M, Q)$ be an fqm.
- If $2 k \not \equiv \operatorname{sig}(\mathcal{M})(\bmod 2)$, then $M_{k, \mathcal{M}}=\{0\}$.
- Assume that $2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$. Let $W=\operatorname{span}\left\{\mathfrak{e}_{\mu}+\mathfrak{e}_{-\mu}\right\}$ and $d=\operatorname{dim} W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e\left(\nu_{j}\right)$ for $j=1, \ldots, d$ and $0 \leq \nu_{j}<1$, we write $\alpha(A)=\nu_{1}+\ldots+\nu_{d}$.

The dimension formula

- Assume that $2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$. Let $W=\operatorname{span}\left\{\mathfrak{e}_{\mu}+\mathfrak{e}_{-\mu}\right\}$ and $d=\operatorname{dim} W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e\left(\nu_{j}\right)$ for $j=1, \ldots, d$ and $0 \leq \nu_{j}<1$, we write $\alpha(A)=\nu_{1}+\ldots+\nu_{d}$.

Theorem

- We have

$$
\operatorname{dim} M_{k, \mathcal{M}}=d+\frac{d k}{12}-\alpha(e(k / 4) \rho(S))-\alpha\left((e(k / 6) \rho(S T))^{-1}\right)-\alpha(T)
$$

The dimension formula

- Assume that $2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$. Let $W=\operatorname{span}\left\{\mathfrak{e}_{\mu}+\mathfrak{e}_{-\mu}\right\}$ and $d=\operatorname{dim} W$. Denote by ρ the restriction of $\rho_{\mathcal{M}}$ to W.
- For a unitary matrix $A \in \mathbb{C}^{d \times d}$ with eigenvalues $e\left(\nu_{j}\right)$ for $j=1, \ldots, d$ and $0 \leq \nu_{j}<1$, we write $\alpha(A)=\nu_{1}+\ldots+\nu_{d}$.

Theorem

- We have

$$
\operatorname{dim} M_{k, \mathcal{M}}=d+\frac{d k}{12}-\alpha(e(k / 4) \rho(S))-\alpha\left((e(k / 6) \rho(S T))^{-1}\right)-\alpha(T)
$$

- $\operatorname{dim} S_{k, \mathcal{M}}=\operatorname{dim} M_{k, \mathcal{M}}-|\{\mu \in M /\{ \pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|$

$$
+ \begin{cases}0, & \text { if } k \neq 2 \\ \operatorname{dim} M_{0, \mathcal{M}(-1)}, & \text { if } k=2\end{cases}
$$

Trivial estimates

Trivial estimates

- Note that $d=|M /\{ \pm 1\}|$.

Trivial estimates

- Note that $d=|M /\{ \pm 1\}|$.
- We have

$$
\begin{aligned}
\alpha_{1}=\alpha(e(k / 4) \rho(S)) & \leq \frac{1}{2} d, \\
\alpha_{2}=\alpha\left((e(k / 6) \rho(S T))^{-1}\right) & \leq \frac{2}{3} d,
\end{aligned}
$$

Trivial estimates

- Note that $d=|M /\{ \pm 1\}|$.
- We have

$$
\begin{aligned}
\alpha_{1}=\alpha(e(k / 4) \rho(S)) & \leq \frac{1}{2} d, \\
\alpha_{2}=\alpha\left((e(k / 6) \rho(S T))^{-1}\right) & \leq \frac{2}{3} d,
\end{aligned}
$$

- Let $\alpha_{3}=\rho(T)$ and $\alpha_{4}=|\{\mu \in M /\{ \pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|$.

Trivial estimates

- Note that $d=|M /\{ \pm 1\}|$.
- We have

$$
\begin{aligned}
\alpha_{1}=\alpha(e(k / 4) \rho(S)) & \leq \frac{1}{2} d, \\
\alpha_{2}=\alpha\left((e(k / 6) \rho(S T))^{-1}\right) & \leq \frac{2}{3} d,
\end{aligned}
$$

- Let $\alpha_{3}=\rho(T)$ and $\alpha_{4}=|\{\mu \in M /\{ \pm 1\} \mid Q(\mu) \in \mathbb{Z}\}|$.
- We have

$$
\alpha_{3}+\alpha_{4} \leq d
$$

Trivial estimates

$$
\begin{aligned}
& \text { Corollary } \\
& \text { If } k>14 \text { and } 2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4) \text {, then } S_{k, \mathcal{M}} \neq\{0\} \text {. }
\end{aligned}
$$

Trivial estimates

Corollary
 If $k>14$ and $2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$, then $S_{k, \mathcal{M}} \neq\{0\}$.

Remark

This bound is sharp! (We have $S_{14}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\{0\}$.)

Better estimates

Definition

Let N be the level of \mathcal{M}. For $s \in \mathbb{R}$ define the divisor sum

$$
\sigma(s, \mathcal{M})=\sum_{a \mid N} a^{s}|M[a]| .
$$

Better estimates

Definition

Let N be the level of \mathcal{M}. For $s \in \mathbb{R}$ define the divisor sum

$$
\sigma(s, \mathcal{M})=\sum_{a \mid N} a^{s}|M[a]| .
$$

Better estimates

Definition

Let N be the level of \mathcal{M}. For $s \in \mathbb{R}$ define the divisor sum

$$
\sigma(s, \mathcal{M})=\sum_{a \mid N} a^{s}|M[a]| .
$$

- We have

$$
\sigma(s, \mathcal{M}) \leq \sqrt{\frac{2|M|}{N}} \sigma_{s+1 / 2}(N)
$$

Better estimates

Proposition

We have

Better estimates

Proposition

We have

- $\left|\alpha_{1}-d / 4\right| \leq \frac{1}{4} \sqrt{|M[2]|}$,

Better estimates

Proposition

$$
\begin{aligned}
& \text { We have } \\
& \qquad \begin{aligned}
-\left|\alpha_{1}-d / 4\right| & \leq \frac{1}{4} \sqrt{|M[2]|} \\
-\left|\alpha_{2}-d / 3\right| & \leq \frac{1}{3 \sqrt{3}}(1+\sqrt{|M[3]|})
\end{aligned}
\end{aligned}
$$

Better estimates

Proposition

$$
\begin{aligned}
& \text { We have } \\
& \qquad \begin{array}{l}
\\
\\
\quad\left|\alpha_{1}-d / 4\right| \leq \frac{1}{4} \sqrt{|M[2]|}, \\
\\
\left|\alpha_{2}-d / 3\right| \leq \frac{1}{3 \sqrt{3}}(1+\sqrt{|M[3]|}), \\
\\
>\alpha_{4} \leq \frac{|M[2]|}{2}+\frac{\sqrt{|M|}}{2} \sigma(-1, \mathcal{M}),
\end{array}
\end{aligned}
$$

Better estimates

Proposition

$$
\begin{aligned}
& \text { We have } \\
& \text { - }\left|\alpha_{1}-d / 4\right| \leq \frac{1}{4} \sqrt{|M[2]|}, \\
& \text { - }\left|\alpha_{2}-d / 3\right| \leq \frac{1}{3 \sqrt{3}}(1+\sqrt{|M[3]|}) \text {, } \\
& \text { - } \alpha_{4} \leq \frac{|M[2]|}{2}+\frac{\sqrt{|M|}}{2} \sigma(-1, \mathcal{M}) \text {, } \\
& \text { - }\left|\alpha_{3}-d / 2+\alpha_{4} / 2\right| \leq \frac{|M[2]|}{8}+\alpha_{5} / 2
\end{aligned}
$$

Better estimates

Proposition

We have

- $\left|\alpha_{1}-d / 4\right| \leq \frac{1}{4} \sqrt{|M[2]|}$,
$-\left|\alpha_{2}-d / 3\right| \leq \frac{1}{3 \sqrt{3}}(1+\sqrt{|M[3]|})$,
$\nabla \alpha_{4} \leq \frac{|M[2]|}{2}+\frac{\sqrt{|M|}}{2} \sigma(-1, \mathcal{M})$,
> $\left|\alpha_{3}-d / 2+\alpha_{4} / 2\right| \leq \frac{|M[2]|}{8}+\alpha_{5} / 2$

$$
\alpha_{5} \leq \frac{\sqrt{|M|}}{\pi}(3 / 2+\ln (N))\left(\sigma(-1, \mathcal{M})-\frac{\sqrt{|M|}}{N}\right)
$$

Better estimates

Better estimates

Theorem (BEF)

For every $\varepsilon>0$ there is a $C>0$, such that

$$
\operatorname{dim} S_{k, \mathcal{M}} \geq d\left(\frac{k-1}{12}-C N^{\varepsilon-1 / 2}\right)
$$

Better estimates

Theorem (BEF)

For every $\varepsilon>0$ there is a $C>0$, such that

$$
\operatorname{dim} S_{k, \mathcal{M}} \geq d\left(\frac{k-1}{12}-C N^{\varepsilon-1 / 2}\right)
$$

Corollary

Let $r \in \mathbb{Z}_{>0}$. There exist only finitely many isomorphism classes of finite quadratic modules \mathcal{M} with minimal number of generators r, such that $S_{k, \mathcal{M}}=\{0\}$ for some $k \geq 2$ with $k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$.

Better estimates

Theorem (BEF)

For every $\varepsilon>0$ there is a $C>0$, such that

$$
\operatorname{dim} S_{k, \mathcal{M}} \geq d\left(\frac{k-1}{12}-C N^{\varepsilon-1 / 2}\right)
$$

Corollary

Let $r \in \mathbb{Z}_{>0}$. There exist only finitely many isomorphism classes of finite quadratic modules \mathcal{M} with minimal number of generators r, such that $S_{k, \mathcal{M}}=\{0\}$ for some $k \geq 2$ with $k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$.

- Problem for our application: if we make C explicit, the bounds on N we can obtain are huge.

Example

Remark

Example

Remark

- Bounding r is necessary.

Example

Remark

- Bounding r is necessary.
- Consider the finite quadratic module \mathcal{M} given by $M=(\mathbb{Z} / 3 \mathbb{Z})^{2 n+1}$ and $Q(x)=\frac{1}{3}\left(x_{1}^{2}+\ldots+x_{2 n}^{2}-(-1)^{n} x_{2 n+1}^{2}\right)$.

Example

Remark

- Bounding r is necessary.
- Consider the finite quadratic module \mathcal{M} given by $M=(\mathbb{Z} / 3 \mathbb{Z})^{2 n+1}$ and $Q(x)=\frac{1}{3}\left(x_{1}^{2}+\ldots+x_{2 n}^{2}-(-1)^{n} x_{2 n+1}^{2}\right)$.
- We have $r=2 n+1, N=3, \operatorname{sig}(M)=6$ and

$$
S_{3, \mathcal{M}}=\{0\} .
$$

Computational difficulty

Computational difficulty

- For $\varepsilon=1 / 5$ we can get for instance $C=18.7$ and this would give $N \geq 6.84 \cdot 10^{7}$ for $k=2$.

Computational difficulty

- For $\varepsilon=1 / 5$ we can get for instance $C=18.7$ and this would give $N \geq 6.84 \cdot 10^{7}$ for $k=2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.

Computational difficulty

- For $\varepsilon=1 / 5$ we can get for instance $C=18.7$ and this would give $N \geq 6.84 \cdot 10^{7}$ for $k=2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....

Computational difficulty

- For $\varepsilon=1 / 5$ we can get for instance $C=18.7$ and this would give $N \geq 6.84 \cdot 10^{7}$ for $k=2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
- and an explicit formula for $\operatorname{dim} M_{0, \mathcal{M}(-1)}$!

Computational difficulty

- For $\varepsilon=1 / 5$ we can get for instance $C=18.7$ and this would give $N \geq 6.84 \cdot 10^{7}$ for $k=2$.
- This would at least result in a search for $|A| \leq 2.19 \cdot 10^{31}$.
- This might be possible to do with a very fast implementation and a huge parallel search....
- and an explicit formula for $\operatorname{dim} M_{0, \mathcal{M}(-1)}$!
- We did not try to do this.

Anisotropic modules

Anisotropic modules

Definition

A finite quadratic module $\mathcal{M}=(M, Q)$ is called isotropic if there exists a $m \in M$, $m \neq 0$ with $Q(m)=0 \in \mathbb{Q} / \mathbb{Z}$. Otherwise, \mathcal{M} is called anisotropic.

Anisotropic modules

Definition

A finite quadratic module $\mathcal{M}=(M, Q)$ is called isotropic if there exists a $m \in M$, $m \neq 0$ with $Q(m)=0 \in \mathbb{Q} / \mathbb{Z}$. Otherwise, \mathcal{M} is called anisotropic.

Example

The anisotropic fqm's of odd prime level p are

$$
\left(\mathbb{Z} / p \mathbb{Z}, \frac{a x^{2}}{p}\right), a \in(\mathbb{Z} / p \mathbb{Z})^{\times}
$$

and

$$
\left((\mathbb{Z} / p \mathbb{Z})^{2}, \frac{x^{2}-a y^{2}}{p}\right), \quad\left(\frac{a}{p}\right)=-1 .
$$

Anisotropic modules

Definition

A finite quadratic module $\mathcal{M}=(M, Q)$ is called isotropic if there exists a $m \in M$, $m \neq 0$ with $Q(m)=0 \in \mathbb{Q} / \mathbb{Z}$. Otherwise, \mathcal{M} is called anisotropic.

Example

The anisotropic fqm's of odd prime level p are

$$
\left(\mathbb{Z} / p \mathbb{Z}, \frac{a x^{2}}{p}\right), a \in(\mathbb{Z} / p \mathbb{Z})^{\times}
$$

and

$$
\left((\mathbb{Z} / p \mathbb{Z})^{2}, \frac{x^{2}-a y^{2}}{p}\right), \quad\left(\frac{a}{p}\right)=-1 .
$$

- If \mathcal{M} is anisotropic, $N=2^{t} N^{\prime}, t \in\{0,1,2,3\}$ and N^{\prime} is odd and squarefree.

An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M}=(M, Q)$ be an anisotropic fqm. Assume for simplicity that $|M|$ is odd.

An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M}=(M, Q)$ be an anisotropic fqm. Assume for simplicity that $|M|$ is odd.Define

$$
R=\prod_{\substack{p \mid N \\ \operatorname{ord}_{p}(|M|)=2}} p .
$$

Then

$$
\alpha_{5}=-\sum_{\substack{d(N \\ d(d, R)}} \epsilon(d)(N / d, R) H(-d(d, R)),
$$

An estimate for anisotropic modules

Theorem (BEF)

Let $\mathcal{M}=(M, Q)$ be an anisotropic fqm. Assume for simplicity that $|M|$ is odd.Define

$$
R=\prod_{\substack{p \mid N \\ \operatorname{ord}_{p}(|M|)=2}} p
$$

Then

$$
\alpha_{5}=-\sum_{\substack{d \mid N \\ d(d, R)}} \epsilon(d)(N / d, R) H(-d(d, R))
$$

where $|\epsilon(d)|=1$ and $H(-D)$ is the number of primitive positive definite quadratic forms of discriminant $-D$ for $D>4, H(-3)=1 / 3, H(-4)=1 / 4$.

Estimates

Estimates

Lemma

$$
\text { We have } H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}
$$

Estimates

Lemma

$$
\text { We have } H(-D) \leq \frac{\sqrt{D} \ln D}{\pi} \text {. }
$$

Corollary

Let \mathcal{M} be an anisotropic fqm.

Estimates

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.

Corollary

Let \mathcal{M} be an anisotropic fqm. Then

$$
\operatorname{dim} S_{k, \mathcal{M}} \geq \frac{(|A|+1)(k-1)}{24}-3-0.86|A|^{5 / 8} \ln (2|A|)
$$

Estimates

Lemma

We have $H(-D) \leq \frac{\sqrt{D} \ln D}{\pi}$.

Corollary

Let \mathcal{M} be an anisotropic fqm. Then

$$
\operatorname{dim} S_{k, \mathcal{M}} \geq \frac{(|A|+1)(k-1)}{24}-3-0.86|A|^{5 / 8} \ln (2|A|)
$$

Corollary

If $\mathcal{M}=(M, Q)$ is anisotropic and $2 k \equiv-\operatorname{sig}(\mathcal{M})(\bmod 4)$ with $|M| \geq 5.3 \cdot 10^{6}$, then $S_{k, \mathcal{M}} \neq\{0\}$.

List of all k-simple anisotropic fqm's

List of all k-simple anisotropic fqm's

k	signature	k-simple finite quadratic modules	count
2	0	$1^{+1}, 5^{-1}, 2_{1}^{+1} 4_{7}^{+1}, 3^{+1} 11^{-1}, 2^{-2} 5^{+1}, 2_{2}^{+2} 3^{+1}$,	13
		$2_{6}^{+2} 3^{-1}, 13^{-1}, 2_{6}^{+2} 7^{+1}, 17^{+1}, 3^{-1} 7^{-1}$,	
		$2_{1}^{+1} 4_{1}^{+1} 3^{+1}, 2_{6}^{+2} 3^{+1} 5^{+1}$	
2	4	$2^{-2}, 3^{+2}, 5^{+1}, 5^{-2}, 2_{1}^{+1} 4_{3}^{-1}, 3^{-1} 11^{-1}, 2^{-2} 5^{-1}$,	15
		$2_{2}^{+2} 3^{-1}, 2_{6}^{+2} 3^{+1}, 13^{+1}, 2_{2}^{+2} 7^{+1}, 17^{-1}$,	
		$3^{+1} 7^{-1}, 2_{1}^{+1} 4_{1}^{+1} 3^{-1}, 2_{2}^{+2} 3^{-1} 5^{-1}$	
$\frac{5}{2}$	3	$2_{3}^{+3}, 4_{3}^{-1}, 4_{3}^{-1} 5^{-1}, 2_{1}^{+1} 3^{-1}, 2_{7}^{+1} 3^{+2}, 2_{1}^{+1} 7^{+1}$,	12
		$2_{1}^{+1} 11^{-1}, 4_{1}^{+1} 7^{+1}, 2_{7}^{+1} 5^{+1}, 4_{1}^{+1} 3^{-1}, 4_{5}^{-1} 3^{+1}$,	
		$2_{1}^{+1} 3^{-1} 5^{-1}$	
$\frac{5}{2}$	7	$2_{7}^{+1}, 4_{7}^{+1}, 2_{1}^{+1} 3^{+1}$	3

List of all k-simple anisotropic fqm's

k	signature	k-simple finite quadratic modules	count
3	2	$3^{-1}, 2_{2}^{+2}, 2^{-2} 3^{+1}, 7^{+1}, 2_{1}^{+1} 4_{1}^{+1}, 11^{-1}$, $3^{+1} 5^{+1}, 3^{-1} 5^{-1}, 2_{2}^{+2} 5^{-1}, 23^{+1}$	10
3	6	3^{+1}	1
$\frac{7}{2}$	1	$2_{1}^{+1}, 4_{1}^{+1}, 2_{7}^{+1} 3^{-1}, 2_{1}^{+1} 5^{-1}, 4_{3}^{-1} 3^{+1}$	5
$\frac{7}{2}$	5	4_{5}^{-1}	1
4	0	$1^{+1}, 5^{-1}$	2
4	4	$5^{+1}, 2^{-2}$	2
$\frac{9}{2}$	3	$4_{3}^{-1}, 2_{1}^{+1} 3^{-1}$	2
$\frac{9}{2}$	7	2_{7}^{+1}	1

List of all k-simple anisotropic fqm's

k	signature	k-simple finite quadratic modules	count
5	2	$3^{-1}, 2_{2}^{+2}, 7^{+1}$	2
5	6	3^{+1}	1
$\frac{11}{2}$	1	$2_{1}^{+1}, 4_{1}^{+1}$	2
6	0	1^{+1}	1
7	2	3^{-1}	1
$\frac{15}{2}$	1	2_{1}^{+1}	1
8	0	1^{+1}	1
10	0	1^{+1}	1
14	0	1^{+1}	1

List of all k-simple anisotropic fqm's

k	signature	k-simple finite quadratic modules	count

List of all k-simple anisotropic fqm's

- In total 78 pairs (\mathcal{M}, k)

List of all k-simple anisotropic fqm's

- In total 78 pairs (\mathcal{M}, k)
- and 50 isomorphism classes of modules.

How to get all of them?

How to get all of them?

- Let $\mathcal{M}=(M, Q)$ be an fqm.

How to get all of them?

- Let $\mathcal{M}=(M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.

How to get all of them?

- Let $\mathcal{M}=(M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M} / U:=U^{\perp} / U$ defines an fqm of order $|M| /|U|^{2}$ and of the same signature.

How to get all of them?

- Let $\mathcal{M}=(M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M} / U:=U^{\perp} / U$ defines an fqm of order $|M| /|U|^{2}$ and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^{\perp} / U is anisotropic.

How to get all of them?

- Let $\mathcal{M}=(M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M} / U:=U^{\perp} / U$ defines an fqm of order $|M| /|U|^{2}$ and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^{\perp} / U is anisotropic.
- We have an inclusion (induction from isotropic subgroups)

$$
S_{k, \mathcal{M} / U} \hookrightarrow S_{k, \mathcal{M}}
$$

How to get all of them?

- Let $\mathcal{M}=(M, Q)$ be an fqm.
- Let $U \subset M$ be an isotropic subgroup.
- Then $\mathcal{M} / U:=U^{\perp} / U$ defines an fqm of order $|M| /|U|^{2}$ and of the same signature.
- Moreover, if U is a maximal isotropic subgroup, then U^{\perp} / U is anisotropic.
- We have an inclusion (induction from isotropic subgroups)

$$
S_{k, \mathcal{M} / U} \hookrightarrow S_{k, \mathcal{M}}
$$

- Therefore, if $S_{k, \mathcal{M} / U} \neq\{0\}$, then $S_{k, \mathcal{M}} \neq 0$.

Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$
B(\mathcal{M}, n)=\left\{\mathcal{N}\left|\exists U \subset \mathcal{N}, \mathcal{N} / U=\mathcal{M},|U|=n^{2}\right\} .\right.
$$

Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$
B(\mathcal{M}, n)=\left\{\mathcal{N}\left|\exists U \subset \mathcal{N}, \mathcal{N} / U=\mathcal{M},|U|=n^{2}\right\} .\right.
$$

Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$
B(\mathcal{M}, n)=\left\{\mathcal{N}\left|\exists U \subset \mathcal{N}, \mathcal{N} / U=\mathcal{M},|U|=n^{2}\right\} .\right.
$$

- Nice property:

$$
B(\mathcal{M}, m \cdot n)=\bigcup_{\mathcal{N} \in B(\mathcal{M}, m)} B(\mathcal{N}, n) .
$$

Our algorithm

Definition

For a finite quadratic module \mathcal{M} and a positive integer n, we define

$$
B(\mathcal{M}, n)=\left\{\mathcal{N}\left|\exists U \subset \mathcal{N}, \mathcal{N} / U=\mathcal{M},|U|=n^{2}\right\} .\right.
$$

- Nice property:

$$
B(\mathcal{M}, m \cdot n)=\bigcup_{\mathcal{N} \in B(\mathcal{M}, m)} B(\mathcal{N}, n) .
$$

- Moreover, we can get very good bounds on primes p, such that for all $\mathcal{N} \in B(\mathcal{M}, p): \operatorname{dim} S_{k, \mathcal{N}}>0$. (The largest one is 37 for $k=2$)

Our algorithm

Our algorithm

- Example: signature $6, r=6, k=3$. (corresponds to signature $(2,4)$)

Statistics

Statistics

- There are 90 finite quadratic modules of signature $2-n$ for $n \geq 2$ with minimal number of generators $\leq 2+n$, such that $S_{1+n / 2, \mathcal{M}}=\{0\}$.

n	number	largest order
2	47	$625: 5^{+4}$
3	16	$162: 2_{7}^{+1} 3^{+4}$
4	6	$243: 3^{+5}$
5	4	$256: 2^{+6} 4_{5}^{-1}$
6	5	$256: 2^{-8}$
7	2	$6: 2_{1}^{+1} 3^{-1}$
8	3	$7: 7^{+1}$
9	3	$8: 8^{+1}$
10	2	$4: 2^{+2}$
18	1	1
26	1	1

Finally: Simple lattices

Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature $(2, n)$.

Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature $(2, n)$.
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.

Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature $(2, n)$.
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
- Therefore, there are exactly 84 isomorphism classes of simple lattices of signature $(2, n)$ for $n \geq 2$.

Finally: Simple lattices

- Out of the 90 finite quadratic modules, 6 do not correspond to lattices of signature $(2, n)$.
- Since the discriminants are fairly low, the genera of all simple lattices each only contain a single isomorphism class.
- Therefore, there are exactly 84 isomorphism classes of simple lattices of signature $(2, n)$ for $n \geq 2$.
- Todo: $n=1$.

Thank you for your attention.

[^0]: 教

