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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Finite quadratic modules

Finite quadratic modules

Definition
A pairM = (M,Q) consisting of a finite abelian group M and a non-degenerate
Q/Z-valued quadratic form Q is called a finite quadratic module (fqm).

I We write (µ, ν) = Q(µ+ ν)−Q(µ)−Q(ν) for the associated bilinear form.
I The level ofM is the smallest positive integer N ∈ Z>0,

such that N ·Q(µ) = 0 ∈ Q/Z for all µ ∈M .
I The signature sig(M) (mod 8) is defined via

1√
|M |

∑
µ∈M

e(Q(µ)) = e

(
sig(M)

8

)
.

Here, e(x) = e2πix.
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Finite quadratic modules

Example

I Let (L,Q) be an even lattice
I and let L′ = {v ∈ L⊗Q Q | ∀λ ∈ L : (v, λ) ∈ Z} be the dual lattice.
I Then the pairML = (L′/L,Q (mod Z)) is a finite quadratic module.
I Every fqm can be obtained this way.
I If the signature of L is (b+, b−), we have by Milgram’s formula that

sig(ML) ≡ b+ − b− (mod 8).
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

The Weil representation

The Weil representation

I Associated withM is a representation ρM of Mp2(Z) on C[M ].
I Mp2(Z) ={

(A, φ(τ)) | A =

(
a b
c d

)
∈ SL2(Z), φ : H→ C, φ2(τ) = cτ + d

}
.

I Mp2(Z) is generated by

S =

((
0 −1
1 0

)
,
√
τ

)
, T =

((
1 1
0 1

)
, 1

)
.

I We have

ρM(T )eµ = e(−Q(µ))eµ

ρM(S)eµ =
e(sig(M)/8)√

|M |

∑
ν∈M

e((µ, ν))eν .
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Vector valued modular forms

Vector valued modular forms

LetM = (M,Q) be a fqm and let f : H −→ C[M] be a holomorphic function.

For
(γ, φ) ∈ Mp2(Z) require the transformation property

f(γτ) = φ(τ)2kρM((γ, φ))f(τ).

I We write Mk,M for the space of modular forms (cf (n, µ) = 0 for n < 0),
I Sk,M for the subspace of cusp forms

(cf (n, µ) = 0 for all µ ∈M with Q(µ) = 0),
I and M !

k,M : weakly holomorphic modular forms
(cf (n, µ) = 0 for n < n0 ∈ Z).
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Borcherds products

Borcherds products

I Let L be an even lattice of signature (2, n), n ≥ 1.
I Borcherds lift:

f ∈M !
k,ML(−1) −→ Ψ(z, f),

I where k = 1− n/2 and Ψ(z, f) is a meromorphic modular form for a
subgroup ΓL ⊂ O(L).

I The weight of Ψ(z, f) is cf (0, 0)/2

I and we have
div(f) =

∑
µ∈L′/L

∑
n<0

cf (n, µ)H(n, µ),

for H(n, µ) the Heegner divisor of index (n, µ).
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Simple lattices

Simple lattices

I The existence of a Borcherds product with a given divisor∑
µ∈L′/L

∑
n<0

c(n, µ)H(n, µ)

with c(n, µ) ∈ Z,

depends on the existence of f ∈M !
1−n/2,ML(−1) with

f =
∑

µ∈L′/L

∑
n<0

c(n, µ)e(nτ) + higher order terms.

I Obstructions for the existence of such an f :

I c(n,−µ) = c(n, µ),
I for every g ∈ S1+n/2,ML

, we have∑
µ∈L′/L

∑
n<0

cf (n, µ)cg(−n, µ) = 0.
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Simple lattices

Simple lattices

I Therefore, if S1+n/2,ML(−1) = {0}, then every principal part with satisfying
c(n,−µ) = c(n, µ) occurs.

I We call a lattice of signature (2, n) simple if S1+n/2,ML
= {0}.

I Goal: Classify all isomorphism classes of simple lattices.
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

The dimension formula

The dimension formula

I Assume that 2k ≡ − sig(M) (mod 4). Let W = span{eµ + e−µ} and
d = dimW . Denote by ρ the restriction of ρM to W .

I For a unitary matrix A ∈ Cd×d with eigenvalues e(νj) for j = 1, . . . , d and
0 ≤ νj < 1, we write α(A) = ν1 + . . .+ νd.

Theorem

I We have

dimMk,M = d+
dk

12
− α (e(k/4)ρ(S))− α

(
(e(k/6)ρ(ST ))−1

)
− α(T )

I dimSk,M = dimMk,M − |{µ ∈M/{±1} | Q(µ) ∈ Z}|

+

{
0, if k 6= 2,

dimM0,M(−1), if k = 2.
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Trivial estimates

Trivial estimates

I Note that d = |M/{±1}|.
I We have

α1 = α (e(k/4)ρ(S)) ≤ 1

2
d,

α2 = α
(
(e(k/6)ρ(ST ))−1

)
≤ 2

3
d,

I Let α3 = ρ(T ) and α4 = |{µ ∈M/{±1} | Q(µ) ∈ Z}|.
I We have

α3 + α4 ≤ d.
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Trivial estimates

Trivial estimates

Corollary

If k > 14 and 2k ≡ − sig(M) (mod 4), then Sk,M 6= {0}.

Remark
This bound is sharp! (We have S14(SL2(Z)) = {0}.)
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Better estimates

Better estimates

Definition
Let N be the level ofM. For s ∈ R define the divisor sum

σ(s,M) =
∑
a|N

as |M [a]| .

I We have

σ(s,M) ≤
√

2 |M |
N

σs+1/2(N)
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Better estimates

Better estimates

Proposition

We have

I |α1 − d/4| ≤ 1
4

√
|M [2]|,

I |α2 − d/3| ≤ 1
3
√
3

(
1 +

√
|M [3]|

)
,

I α4 ≤ |M [2]|
2 +

√
|M |
2 σ(−1,M),

I |α3 − d/2 + α4/2| ≤ |M [2]|
8 + α5/2

I

α5 ≤
√
|M |
π

(3/2 + ln(N))

(
σ(−1,M)−

√
|M |
N

)
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Better estimates

Better estimates

Theorem (BEF)

For every ε > 0 there is a C > 0, such that

dimSk,M ≥ d
(
k − 1

12
− CNε−1/2

)
.

Corollary

Let r ∈ Z>0. There exist only finitely many isomorphism classes of finite quadratic
modulesM with minimal number of generators r, such that Sk,M = {0} for some
k ≥ 2 with k ≡ − sig(M) (mod 4).

I Problem for our application: if we make C explicit, the bounds on N we can
obtain are huge.
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Better estimates

Example

Remark

I Bounding r is necessary.
I Consider the finite quadratic moduleM given by M = (Z/3Z)2n+1 and
Q(x) = 1

3 (x21 + . . .+ x22n − (−1)nx22n+1).
I We have r = 2n+ 1, N = 3, sig(M) = 6 and

S3,M = {0}.
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Better estimates

Computational difficulty

I For ε = 1/5 we can get for instance C = 18.7 and this would give
N ≥ 6.84 · 107 for k = 2.

I This would at least result in a search for |A| ≤ 2.19 · 1031.
I This might be possible to do with a very fast implementation and a huge

parallel search....
I and an explicit formula for dimM0,M(−1)!
I We did not try to do this.
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Anisotropic modules

Anisotropic modules

Definition
A finite quadratic moduleM = (M,Q) is called isotropic if there exists a m ∈M ,
m 6= 0 with Q(m) = 0 ∈ Q/Z. Otherwise,M is called anisotropic.

Example
The anisotropic fqm’s of odd prime level p are(

Z/pZ,
ax2

p

)
, a ∈ (Z/pZ)×

and (
(Z/pZ)2,

x2 − ay2

p

)
,

(
a

p

)
= −1.

I IfM is anisotropic, N = 2tN ′, t ∈ {0, 1, 2, 3} and N ′ is odd and squarefree.
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)
, a ∈ (Z/pZ)×

and (
(Z/pZ)2,

x2 − ay2

p

)
,

(
a

p

)
= −1.

I IfM is anisotropic, N = 2tN ′, t ∈ {0, 1, 2, 3} and N ′ is odd and squarefree.
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Anisotropic modules

An estimate for anisotropic modules

Theorem (BEF)

LetM = (M,Q) be an anisotropic fqm. Assume for simplicity that |M | is
odd.

Define
R =

∏
p|N

ordp(|M |)=2

p.

Then
α5 = −

∑
d|N
d(d,R)

ε(d)(N/d,R)H(−d(d,R)),

where |ε(d)| = 1 and H(−D) is the number of primitive positive definite quadratic
forms of discriminant −D for D > 4, H(−3) = 1/3, H(−4) = 1/4.
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Anisotropic modules

Estimates

Lemma
We have H(−D) ≤

√
D lnD
π .

Corollary

LetM be an anisotropic fqm. Then

dimSk,M ≥
(|A|+ 1)(k − 1)

24
− 3− 0.86 |A|5/8 ln(2 |A|).

Corollary

IfM = (M,Q) is anisotropic and 2k ≡ − sig(M) (mod 4) with |M | ≥ 5.3 · 106,
then Sk,M 6= {0}.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 19



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Anisotropic modules

Estimates

Lemma
We have H(−D) ≤

√
D lnD
π .

Corollary

LetM be an anisotropic fqm. Then

dimSk,M ≥
(|A|+ 1)(k − 1)

24
− 3− 0.86 |A|5/8 ln(2 |A|).

Corollary

IfM = (M,Q) is anisotropic and 2k ≡ − sig(M) (mod 4) with |M | ≥ 5.3 · 106,
then Sk,M 6= {0}.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 19



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Anisotropic modules

Estimates

Lemma
We have H(−D) ≤

√
D lnD
π .

Corollary

LetM be an anisotropic fqm.

Then

dimSk,M ≥
(|A|+ 1)(k − 1)

24
− 3− 0.86 |A|5/8 ln(2 |A|).

Corollary

IfM = (M,Q) is anisotropic and 2k ≡ − sig(M) (mod 4) with |M | ≥ 5.3 · 106,
then Sk,M 6= {0}.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 19



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Anisotropic modules

Estimates

Lemma
We have H(−D) ≤

√
D lnD
π .

Corollary

LetM be an anisotropic fqm. Then

dimSk,M ≥
(|A|+ 1)(k − 1)

24
− 3− 0.86 |A|5/8 ln(2 |A|).

Corollary

IfM = (M,Q) is anisotropic and 2k ≡ − sig(M) (mod 4) with |M | ≥ 5.3 · 106,
then Sk,M 6= {0}.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 19



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Anisotropic modules

Estimates

Lemma
We have H(−D) ≤

√
D lnD
π .

Corollary

LetM be an anisotropic fqm. Then

dimSk,M ≥
(|A|+ 1)(k − 1)

24
− 3− 0.86 |A|5/8 ln(2 |A|).

Corollary

IfM = (M,Q) is anisotropic and 2k ≡ − sig(M) (mod 4) with |M | ≥ 5.3 · 106,
then Sk,M 6= {0}.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 19



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Anisotropic modules

List of all k-simple anisotropic fqm’s

I In total 78 pairs (M, k)

I and 50 isomorphism classes of modules.
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Anisotropic modules

List of all k-simple anisotropic fqm’s

k signature k-simple finite quadratic modules count
2 0 1+1, 5−1, 2+1

1 4+1
7 , 3+111−1, 2−25+1, 2+2

2 3+1, 13

2+2
6 3−1, 13−1, 2+2

6 7+1, 17+1, 3−17−1,
2+1
1 4+1

1 3+1, 2+2
6 3+15+1

2 4 2−2, 3+2, 5+1, 5−2, 2+1
1 4−13 , 3−111−1, 2−25−1, 15

2+2
2 3−1, 2+2

6 3+1, 13+1, 2+2
2 7+1, 17−1,

3+17−1, 2+1
1 4+1

1 3−1, 2+2
2 3−15−1

5
2 3 2+3

3 , 4−13 , 4−13 5−1, 2+1
1 3−1, 2+1

7 3+2, 2+1
1 7+1, 12

2+1
1 11−1, 4+1

1 7+1, 2+1
7 5+1, 4+1

1 3−1, 4−15 3+1,
2+1
1 3−15−1

5
2 7 2+1

7 , 4+1
7 , 2+1

1 3+1 3

I In total 78 pairs (M, k)
I and 50 isomorphism classes of modules.
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List of all k-simple anisotropic fqm’s

k signature k-simple finite quadratic modules count
3 2 3−1, 2+2

2 , 2−23+1, 7+1, 2+1
1 4+1

1 , 11−1, 10

3+15+1, 3−15−1, 2+2
2 5−1, 23+1

3 6 3+1 1
7
2 1 2+1

1 , 4+1
1 , 2+1

7 3−1, 2+1
1 5−1, 4−13 3+1 5

7
2 5 4−15 1

4 0 1+1, 5−1 2

4 4 5+1, 2−2 2
9
2 3 4−13 , 2+1

1 3−1 2
9
2 7 2+1

7 1

I In total 78 pairs (M, k)
I and 50 isomorphism classes of modules.
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k signature k-simple finite quadratic modules count
5 2 3−1, 2+2

2 , 7+1 2

5 6 3+1 1
11
2 1 2+1

1 , 4+1
1 2

6 0 1+1 1

7 2 3−1 1
15
2 1 2+1

1 1

8 0 1+1 1

10 0 1+1 1

14 0 1+1 1

I In total 78 pairs (M, k)
I and 50 isomorphism classes of modules.
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Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

The algorithm

How to get all of them?

I LetM = (M,Q) be an fqm.
I Let U ⊂M be an isotropic subgroup.
I ThenM/U := U⊥/U defines an fqm of order |M | / |U |2 and of the same

signature.
I Moreover, if U is a maximal isotropic subgroup, then U⊥/U is anisotropic.
I We have an inclusion (induction from isotropic subgroups)

Sk,M/U ↪→ Sk,M.

I Therefore, if Sk,M/U 6= {0}, then Sk,M 6= 0.
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The algorithm

Our algorithm

Definition
For a finite quadratic moduleM and a positive integer n, we define

B(M, n) = {N | ∃ U ⊂ N ,N/U =M, |U | = n2}.

I Nice property:
B(M,m · n) =

⋃
N∈B(M,m)

B(N , n).

I Moreover, we can get very good bounds on primes p, such that for all
N ∈ B(M, p): dimSk,N > 0.

(The largest one is 37 for k = 2)
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The algorithm

Our algorithm

I Example: signature 6, r = 6, k = 3. (corresponds to signature (2, 4))

3+1

2+2 3+1 2+2
0 3+1

3+1 9+1 3+1 9−1 3−3 27+1

2+4 3+1 4+2 3+1 4+2
0 3+1

2+2 3+1 9+1 2+2 3+1 9−1 2+2 3−3 2+2 27+1 2+2
0 3−3 3−3 9+1 3−3 9−1 3+5 3+2 27−1 3−2 27+1 3+1 9−2

2+6 3+1 2+6
0 3+1

2+2 4+2 3+1 2−2 4−24 3+1 2+2 4+2
0 3+1

2+4 3+1 9+1 2+4 3+1 9−1 2+4 3−3 2+4 27+1 2+2 3+5 2+2
0 3+5

3+5 9+1 3+5 9−1 3+4 27+1 3−4 27−1 3−3 9−2

2+4 4+2 3+1 2−4 4−24 3+1 2+4 4+2
0 3+1

2+6 3+1 9+1 2+6 3+1 9−1 2+6 3−3 2+6 27+1

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 23



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

The algorithm

Our algorithm

I Example: signature 6, r = 6, k = 3. (corresponds to signature (2, 4))

3+1

2+2 3+1 2+2
0 3+1

3+1 9+1 3+1 9−1 3−3 27+1

2+4 3+1 4+2 3+1 4+2
0 3+1

2+2 3+1 9+1 2+2 3+1 9−1 2+2 3−3 2+2 27+1 2+2
0 3−3 3−3 9+1 3−3 9−1 3+5 3+2 27−1 3−2 27+1 3+1 9−2

2+6 3+1 2+6
0 3+1

2+2 4+2 3+1 2−2 4−24 3+1 2+2 4+2
0 3+1

2+4 3+1 9+1 2+4 3+1 9−1 2+4 3−3 2+4 27+1 2+2 3+5 2+2
0 3+5

3+5 9+1 3+5 9−1 3+4 27+1 3−4 27−1 3−3 9−2

2+4 4+2 3+1 2−4 4−24 3+1 2+4 4+2
0 3+1

2+6 3+1 9+1 2+6 3+1 9−1 2+6 3−3 2+6 27+1

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 23



Introduction and Motivation Lower bounds for the dimension Estimates Our approach to the problem

Statistics

Statistics

I There are 90 finite quadratic modules of signature 2− n for n ≥ 2 with
minimal number of generators ≤ 2 + n, such that S1+n/2,M = {0}.

n number largest order
2 47 625 : 5+4

3 16 162 : 2+1
7 3+4

4 6 243 : 3+5

5 4 256 : 2+64−15

6 5 256 : 2−8

7 2 6 : 2+1
1 3−1

8 3 7 : 7+1

9 3 8 : 8+1

10 2 4 : 2+2

18 1 1
26 1 1
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Statistics

Finally: Simple lattices

I Out of the 90 finite quadratic modules, 6 do not correspond to lattices of
signature (2, n).

I Since the discriminants are fairly low, the genera of all simple lattices each
only contain a single isomorphism class.

I Therefore, there are exactly 84 isomorphism classes of simple lattices of
signature (2, n) for n ≥ 2.

I Todo: n = 1.
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Statistics

Thank you for your attention.
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