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Finite quadratic modules

A pair M = (M, Q) consisting of a finite abelian group M and a non-degenerate
Q/Z-valued quadratic form @ is called a finite quadratic module (fgm).

> We write (1, v) = Q(1n + v) — Q(u) — Q(v) for the associated bilinear form.

> The level of M is the smallest positive integer N € Z+,
suchthat N - Q(u) =0 € Q/Z forall u € M.

» The signature sig(M) (mod 8) is defined via

7 S e =< ().

Here, e(z) = e2™*,
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Finite quadratic modules

Example

» Let (L, Q) be an even lattice

andlet L’ ={ve L®yQ | YA€ L: (v,)\) € Z} be the dual lattice.
Then the pair M = (L'/L,Q (mod Z)) is a finite quadratic module.
Every fgm can be obtained this way.

If the signature of L is (b*,b™), we have by Milgram’s formula that
sig(Mp)=b" — b~ (mod 8).

vV vV v Vv
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Vector valued modular forms

Vector valued modular forms

Let M = (M, Q) be afgm and let f : H — C[M] be a holomorphic function. For
(v, ¢) € Mp4(Z) require the transformation property

FOm) = o(m)* pa((7, ) F (7).

» We write M, o4 for the space of modular forms (c¢(n, 1) = 0 for n < 0),

> Sk for the subspace of cusp forms
(cg(n,p) = 0forall p € M with Q(n) = 0),

» and Mk  : weakly holomorphic modular forms
(cg(n, u) = 0forn < ng € Z).
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Borcherds products

> Let L be an even lattice of signature (2,n), n > 1.
» Borcherds lift:
f €My 1y — (= ),
» where k =1 —n/2and ¥(z, f) is a meromorphic modular form for a
subgroup I';, C O(L).
» The weight of ¥(z, f) is ¢£(0,0)/2
» and we have

div(f)= > > crln,w)H(n, p),

peL’ /L n<0

for H(n, ) the Heegner divisor of index (n, u).
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> e(n,wH(n, )

neL’ /L n<0

with ¢(n, 1) € Z, depends on the existence of f € M{_ _1 with

n/Z,ML(

f= Z Z c(n, w)e(nt) + higher order terms.

nEL’ /L n<0

» Obstructions for the existence of such an f:
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Simple lattices

» The existence of a Borcherds product with a given divisor

> e(n,wH(n, )

neL’ /L n<0

with c(n, j1) € Z, depends on the existence of f € M;_, , ;) With

Z Z c(n, w)e(nt) + higher order terms.
nEL’ /L n<0
» Obstructions for the existence of such an f:

c(n, —/L) = C(’Il, ,LL),
for every g € S14n/2,01,, We have

Z Z cr (na u)cg(—n, /J‘) =0.

weL’ /L n<0
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Simple lattices

» Therefore, if S11,,/2. 0, (—1) = {0}, then every principal part with satisfying
c(n, —p) = ¢(n, 1) oceurs.

» We call a lattice of signature (2, 1) simple if Sy, /2 11, = {0}.
» Goal: Classify all isomorphism classes of simple lattices.
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Letk € 1Z and let M = (M, Q) be an fqm.

If 2k 5_'5 Slg(M) (mod 2), then Mk,M = {0}

Assume that 2k = —sig(M) (mod 4). Let W = span{e, +¢_,} and

d = dim W. Denote by p the restriction of ppq to W.

For a unitary matrix A € C?*? with eigenvalues e(v;) for j = 1,...,d and
0<y; < 1,wewritea(A) =1 +...+vg.

vy

v

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 9



Lower bounds for the dimension
(]

The dimension formula

The dimension formula

» Assume that 2k = —sig(M) (mod 4). Let W = span{e, +¢_,} and
d = dim . Denote by p the restriction of ppq to W.

» For a unitary matrix A € C?*? with eigenvalues e(v;) for j = 1,...,d and
0<v; <1, wewrite a(A) =11 +... +vg.

Theorem

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 9




Lower bounds for the dimension
(]

The dimension formula

The dimension formula

» Assume that 2k = —sig(M) (mod 4). Let W = span{e, +¢_,} and
d = dim . Denote by p the restriction of ppq to W.

» For a unitary matrix A € C?*? with eigenvalues e(v;) for j = 1,...,d and
0<v; <1, wewrite a(A) =11 +... +vg.

Theorem

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 9




Estimates

Trivial estimates

Trivial estimates

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 10



Trivial estimates

Trivial estimates

> Note that d = |M/{£1}|.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 10



Estimates

Trivial estimates

Trivial estimates

> Note that d = |M/{£1}|.
» We have

IN

ar = o (e(k/4)p(S))
ay = a ((e(k/6)p(ST)) ")

IN
W NN~
&~ &

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 10



Estimates

o0

Trivial estimates

Trivial estimates

> Note that d = |M/{£1}|.
» We have

ay = a(e(k/4)p(S))

o = a ((e(k/6)p(ST)) ")

IN
a

W NN~

IN
a

> Letag = p(T) and ay = [{p € M/{£1} | Q(u) € Z}].
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> Note that d = |M/{£1}|.
» We have

IN

ay = a(e(k/4)p(S))

o = a ((e(k/6)p(ST)) ")

IN
W NN~
&~ &

> Letag = p(T) and ay = [{p € M/{£1} | Q(u) € Z}].

» We have
az +ay < d.
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» We have
2| M|
N

o(s,M) < Osy1/2(N)
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Better estimates

Theorem (BEF)
For every e > 0 there is a C > 0, such that

dim Sy > d (% — CNE-W) .

Corollary

Letr € Z~q. There exist only finitely many isomorphism classes of finite quadratic
modules M with minimal number of generators r, such that S, p = {0} for some
k > 2 with k = —sig(M) (mod 4).

» Problem for our application: if we make C' explicit, the bounds on NV we can
obtain are huge.
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N > 6.84-107 for k = 2.

» This would at least result in a search for |A| < 2.19 - 1031

» This might be possible to do with a very fast implementation and a huge
parallel search....

» and an explicit formula for dim My aq(—1)!
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Better estimates

Computational difficulty

» For e = 1/5 we can get for instance C' = 18.7 and this would give
N > 6.84-107 for k = 2.

This would at least result in a search for |A| < 2.19 - 103!,

This might be possible to do with a very fast implementation and a huge
parallel search....

and an explicit formula for dim My pq(—1)!
We did not try to do this.

v

v

v

v

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 16



Our approach to the problem
®©0000

Anisotropic modules

Anisotropic modules

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 17



approach to the problem
00

Anisotropic modules

Anisotropic modules

Definition

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 17



Anisotropic modules

Anisotropic modules

Definition

Example

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 17

Our approach to the problem
@000




Our approach to the problem
@000

Anisotropic modules

Anisotropic modules

Definition

Example

» If M is anisotropic, N = 2! N’, t € {0,1,2,3} and N’ is odd and squarefree.
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Anisotropic modules

Estimates

Lemma

We have H(—D) < ¥PInD_

™

Corollary

Let M be an anisotropic fqm. Then

(Al + D& - 1)
24

Corollary

If M = (M, Q) is anisotropic and 2k = — sig(M) (mod 4) with |M| > 5.3 - 105,
then Sy am # {0}.

dim Sy, ¢ > —3-0.86|A"%1In(2]4]).
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Anisotropic modules

List of all k-simple anisotropic fqm’s

k | signature k-simple finite quadratic modules | count
2 0| 1+, 571 2fTaft 3+i11-1 2725+ 2723+ | 13

242371, 1371, 227+ 17t 37l
21+14ir13+1, 2(4{23-&-15-&-1

2 4 | 272,372 5% 572 2141 3711171, 272571 | 15
252371, 22341 13+ o 27+l 171,
3ti7=1, 214131 223151

s 3 237,41, 451571 2 13—t 2 132 oI HL T 12
PRE B L R G PR R 41+13—1+,14g113+11,
2113715~

B 7 20 41 213t [ 3
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List of all k-simple anisotropic fqm’s

k | signature k-simple finite quadratic modules | count
3 2| 371,257, 2723+ 7+ o4t 117t [ 10
3ti5tt 3-15-1 2F25-1 23+!

3 6 3T 11

z 1 270, 47 28131 2 51 413t [ 5

z 5 451 |1

4 0 1571 ]2

4 4 5¥1,272 [ 2

3 3 451, 2171371 [ 2

3 7 27T 1
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k | signature | k-simple finite quadratic modules | count
5 2 371273 7t | 2
5 6 3t A
I 1 24t | 2
6 0 AR
7 2 3711
i 1 271 [ 1
8 0 IRE
10 0 1+ [ 1
14 0 17111
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List of all k-simple anisotropic fqm’s

> In total 78 pairs (M, k)
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List of all k-simple anisotropic fqm’s

> In total 78 pairs (M, k)
» and 50 isomorphism classes of modules.
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How to get all of them?

> Let M = (M, Q) be an fgm.
» Let U C M be an isotropic subgroup.

» Then M/U := UL /U defines an fqm of order | M|/ |U|* and of the same
signature.

» Moreover, if U is a maximal isotropic subgroup, then U+ /U is anisotropic.
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The algorithm

How to get all of them?

> Let M = (M, Q) be an fgm.
» Let U C M be an isotropic subgroup.

» Then M /U := UL /U defines an fqm of order |M| / |U|* and of the same
signature.

Moreover, if U is a maximal isotropic subgroup, then U~ /U is anisotropic.
We have an inclusion (induction from isotropic subgroups)
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Our approach to the problem
0000000 [¢] 0000000 0000@00000

The algorithm

How to get all of them?

> Let M = (M, Q) be an fgm.
» Let U C M be an isotropic subgroup.

» Then M /U := UL /U defines an fqm of order |M| / |U|* and of the same
signature.

» Moreover, if U is a maximal isotropic subgroup, then U+ /U is anisotropic.
» We have an inclusion (induction from isotropic subgroups)

Sk MU = SkM-

» Therefore, if S, ¢/ # {0}, then Sy aq # 0.
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» Nice property:
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Our approach to the problem
000

The algorithm

Our algorithm

Definition

» Nice property:
BWM,m-n) = U B(N,n).
NeEB(M,m)
» Moreover, we can get very good bounds on primes p, such that for all
N € B(M,p): dim Sy, nr > 0. (The largest one is 37 for k = 2)
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Our approach to the problem
0000000 [¢] 0000000 000000@000

The algorithm

Our algorithm

» Example: signature 6, r = 6, k = 3. (corresponds to signature (2,4))
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Statistics

» There are 90 finite quadratic modules of signature 2 — n for n > 2 with
minimal number of generators < 2 4+ n, such that Sy /2 v = {0}.

number | largest order
47 625 : 5+
162 : 2713+
243 : 315
256 : 270421
256 : 278
6:21371
7.7t
8:8F1
4.2%2

1

1

[t
(=2}

©|oo| 1| o] o x| | o] 3

—
o

—
o9}

==l ol wlw| | o e|o

DO
[=p}
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Finally: Simple lattices
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Finally: Simple lattices

» Out of the 90 finite quadratic modules, 6 do not correspond to lattices of
signature (2, n).
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Finally: Simple lattices

» Out of the 90 finite quadratic modules, 6 do not correspond to lattices of
signature (2, n).

» Since the discriminants are fairly low, the genera of all simple lattices each
only contain a single isomorphism class.
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Statistics

Finally: Simple lattices

» Out of the 90 finite quadratic modules, 6 do not correspond to lattices of
signature (2, n).

» Since the discriminants are fairly low, the genera of all simple lattices each
only contain a single isomorphism class.

» Therefore, there are exactly 84 isomorphism classes of simple lattices of
signature (2, n) forn > 2.
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Our approach to the problem
0000000 [¢] 0000000 0000000000

Statistics

Finally: Simple lattices

» Out of the 90 finite quadratic modules, 6 do not correspond to lattices of
signature (2, n).

» Since the discriminants are fairly low, the genera of all simple lattices each
only contain a single isomorphism class.

» Therefore, there are exactly 84 isomorphism classes of simple lattices of
signature (2, n) forn > 2.

» Todo:n =1.

March 26, 2014 | FB 4 TUD | Stephan Ehlen | 25



Our approach to the problem

Statistics

Thank you for your attention.
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