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Possible applications

Jacobi forms over number fields

Same type of correspondence as over Q (between scalar and
vector-valued)
Liftings between Hilbert modular forms and Jacobi forms (Shimura lift)

Independent applications for the reduction algorithms:

Reduction of hyperelliptic curves
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Preliminaries

K/Q number field of degree n

OK the ring of integers of K .

Embeddings: σi : K → R, 1≤ i ≤ n,

Trace and norm:

Trα = ∑σiα, Nα = ∏σiα.

If A =
(

a b
c d

)
∈M2 (K ) we write Ai =

(
ai bi
ci di

)
=
(

σi (a) σi (b)
σi (c) σi (d)

)
.
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Generalised upper half plane

The group SL2 (K )⊂M2 (K ) acts on

Hn 'H×·· ·×H = {(z1, . . . ,zn) | zj ∈H}

by
Az = (A1z1, . . . ,Anzn) ∈Hn

where Aizi is the usual action of PSL2(R) on the upper half-plane H.

The (full) Hilbert modular group is defined as:

ΓK = SL2(OK ) =
{(

a b
c d

)
, a,b,c,d ∈ OK , ad−bc = 1

}
Important: the definition of “the” Hilbert modular group is not canonical
and other choices exist.



Preliminaries The dimension formula Computations Reduction algorithm

Hilbert modular forms

Let k = (k1,k2, . . . ,kn) ∈ Zn

If f : Hn→ C is holomorphic and satisfies

f (Az) = JA (z;k) f (z)

where JA (z;k) = ∏(cizi + di )
ki then we say that f is a Hilbert modular

form on ΓK of weight k .
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Vector-valued Hilbert modular forms

Let ρ : ΓK → GL(r ,C) be a finite dimensional representation of ΓK s.t.

Ker(ρ) = Γ a finite index subgroup of ΓK
If α ∈ Z (ΓK ) then

ρ(α)Jα (z;k) = 1r×r (*)

If f : Hn→ Cr is holomorphic and satisfies

f (Az) = JA (z;k)ρ(A) f (z)

for all A ∈ ΓK then f is said to be a vector-valued Hilbert modular form of
weight k and representation ρ.

Denote the space of these by Mk (ρ)

Note that (*) implies that f (αz) = ρ(α)Jα (z;k) f (z) = f (z)

If f ∈Mk (ρ) and f = ∑ fivi then fi ∈Mk (Γ) (scalar-valued)

Sk (ρ) =
{

f = ∑ fivi ∈Mk (ρ) , : fi ∈ Sk (Γ)
}
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Main theorem

If k ∈ Zn with k � 2 then:

dimSk (ρ) =
1
2

dimρ ·ζK (−1) ·N(k−1)

+"elliptic terms"

+"parabolic terms

Identity (main) term: ζK (−1) (a rational number)

Example: ζQ(
√

5) = 1
30 , ζQ(

√
193) (−1) = 16 + 1

3 , ζQ(
√

1009) (−1) = 211.

Finite order (“elliptic”) terms

Parabolic (“cuspidal”) term

Remark

We have also shown the corresponding theorem for half-integral weight.
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The elliptic terms

"elliptic terms" = ∑
U

1
|U| ∑
±16=A∈U

χρ (A) ·E (A)

here U runs through elliptic conjugacy classes and

χρ (A) = Trρ(A) ,

E (A) =
n

∏
i=1

r (Ai )
1−kσ

r(Ai )− r (Ai )
−1

r (A) =
1
2

(
t + sgn(c)

√
t2−4

)
, t = TrA

Note that if Az∗ = z∗ then r (A) = cz∗+ d = jA (z∗).
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Cusps of SL2(OK )

Cusp: λ = (ρ : σ) ∈ P1 (K )

Fractional ideal: aλ = (ρ,σ)

λ∼ µ (mod SL2(OK ))⇔ aλ = (α)aµ

The number of cusp classes equals the class number of K (we assume
this is = 1).

Cusp-normalizing map: ∃ξ,η ∈ a−1
λ

s.t.

Aλ =

(
ρ ξ

σ η

)
∈ SL2(K ),

A−1
λ

SL2(OK )Aλ = SL2
(
a2⊕OK

)
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Cuspidal term

Contribution of the cusp λ is the value at s = 1 of a twisted Shimizu L-series

L(s;λ,ρ) =

√
|dK |N(a−2

λ
)

(−2πi)n ∑
06=a∈a−2

λ
/U2

χρ

(
A−1

λ

(
1 a
0 1

)
Aλ

) sgn(N(a))

|N(a)|s
.

The “untwisted” L-series (ρ = 1) is known to have analytic cont. and
functional equation

Λ(s) = Γ

(
s + 1

2

)n(vol(OK )

πn+1

)s

L(s;OK ,1) = Λ(1− s)

It is easy to see that the L-function for ρ 6= 1 also has AC. FE is more
complicated (cf. Hurwitz-Lerch).

If K has a unit of norm −1 then L(s;OK ,1) = 0 (conditions on ρ in
general)
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Notes on the L-series

Note that L(s;OK ,1) is proportional to

L(s,χ) = ∑
06=a⊆OK

χ(a)

|N(a)|s

where the sum is over all integral ideals of OK and χ(a) = sgn(N(a)).

Studied by Hecke, Siegel, Meyer, Hirzebruch and others.

Can be expressed in terms of Dedekind sums (Siegel)
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Example Q
(√

3
)

By Siegel (see e.g. Gundlach): L(1,sgn◦N) = π2

12
√

3
.

Our parabolic term is then:

L(1;∞,1) =−1
6
.

Example k1 = k2 = 2: Scalar term

1
2

ζ√3 (−1) =
1

12
Elliptic terms (there are 3 order 4 classes, 2 order 6 and 1 order 12):

1
8

+
1
8

+
1
8

+
1
9

+
1
9

+
35
72

= 1 +
1
12

dimS2,2 (1) = 1.

Example k1 = k2 = 4:
Scalar term = 3

4
Elliptic terms:

1
8

+
1
8

+
1
8
− 2

9
− 2

9
+

35
72

=
5

12
dimS4,4 (1) = 3

4 + 5
12 −

1
6 = 1.
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Example

We can compute dimensions of congruence subgroups.

Let K = Q
(√

5
)
, m =

(√
5
)

and consider

Γ0 (m) =
{(

a b
c d

)
∈ ΓK , c ∈m

}
and let ρ = IndΓK

Γ0(m) be the induced representation. Then we can compute
the dimensions:

k1 = k2 dimSk (ΓK ) dimSk (Γ0 (m))

2 1 1
4 0 0
6 1 3
8 1 5
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Conjugacy classes

Scalar if A =±1

Elliptic: A has finite order.

Parabolic: If A is not scalar but TrA =±2.

Mixed (these do not contribute to the dimension formula).

Note: the names “elliptic” and “parabolic” are not standard for Hilbert modular
groups.
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There are two main computational tasks

1 Elliptic contribution:

The terms are easy to compute
The problem is to find the classes (representatives)

2 Cuspidal contribution:

The conjugacy classes are easy to find.
The problem is to compute L(1;OK ,ρ).
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How do we find elliptic conjugacy classes?

Characterisation / parametrisation of elliptic elements: (t;x ,y)→ zt,x ,y

This is an infinite list!

Use a reduction algorithm for ΓK to obtain a finite set of reduced points.

Choice of fundamental domain for ΓK .
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Which orders can appear?

Lemma

If A in ΓK has order m then ϕ(m) = 2d where d divides n = degK .

If K = Q
(√

D
)

then the possible orders are:

3,4,6 (solutions of ϕ(l) = 2), and

5,8,10,12 (solutions of ϕ(l) = 4)
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Parametrisation of elliptic elements

Lemma

Let a be a fractional ideal and t ∈ K be such that |t| � 2 . Then

A =
(

a b
c d

)
7→ λ(A) =

a−d +
√

t2−4
2c

is a bijection between the set of elements of SL2 (a⊕OK ) with trace t and{
zt,x ,y =

x +
√

t2−4
2y

∈HK : x ∈ OK , y ∈ a, x2− t2 + 4 ∈ 4OK

}
.
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To compute elliptic classes

We choose a (closed) fundamental domain FK of ΓK .

There are EXPLICIT bounds on x ,y for zt,x ,y ∈ FK → finite list.

Note that there are formulas for the number of elliptic elements (for
quadratic K ) but we need to know the actual matrices.

Main problem:

How do we know whether two reduced elliptic points (in the fundamental
domain) are equivalent or not?
The identifying matrix can be complicated.
IDEALLY: follow the “bottom” of fundamental domain to get generators and
relations.



Preliminaries The dimension formula Computations Reduction algorithm

Distance to a cusp

Distance to infinity

∆(z,∞) = N(y)−
1
2

Distance to other cusps

∆(z,λ) = ∆
(
A−1

λ
z,∞

)
.

λ is a closest cusp to z if

∆(z,λ)≤∆(z,µ) , ∀µ ∈ P1 (K ) .
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Lattices related to K

OK the ring of integers with integral basis 1 = α1,α2, . . .αn

OK ' α1Z⊕·· ·⊕αnZ,

O×K the unit group with generators ±1,ε1, . . . ,εn−1

O×K ' 〈±1〉×〈ε1〉× · · · 〈εn−1〉

Λ the logarithmic unit lattice: vi = (ln |σ1εi | , . . . , ln |σn−1εi |)

Λ = v1Z⊕·· ·⊕ vn−1Z.

The volume of Λ is called the regulator Reg(K ).

The volume of OK is |dK |
1
2 , dK is the discriminant of K .

We denote Gram matrices of the above lattices by BOK and Λ.



Preliminaries The dimension formula Computations Reduction algorithm

Example Q
(√

5
)

In Q
(√

5
)

we have the fundamental unit ε and its conjugate ε∗:

ε0 =
1
2

(
1 +
√

5
)
, ε

∗ =−ε
−1
0 =

1
2

(
1−
√

5
)
.

And

OK ' Z+ ε0Z,

Λ ' Z ln

∣∣∣∣1 +
√

5
2

∣∣∣∣
with the volume given by

|OK | =

∣∣∣∣det

(
1
2

(
1 +
√

5
)

1
2

(
1−
√

5
)

1 1

)∣∣∣∣=
√

5

|Λ| =

∣∣∣∣ln 1
2

(
1 +
√

5
)∣∣∣∣' 0.4812 . . .
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Generators

It is known that SL2(OK ) is generated by (for example)

T α =

(
1 α

0 1

)
, α = α1, . . . ,αn,

S =

(
0 −1
1 0

)
,

E (ε) =

(
ε 0
0 ε−1

)
,ε =−1,ε1, . . . ,εn−1

Problem: can not generalise Poincaré from SL2(R). That is we can not
obtain a fundamental domain with sides identified by the above generators.
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Reduction algorithm for z ∈HK

For simplicity assume class number one.

Find closest cusp λ and set z∗ = x∗+ iy∗ = A−1
λ

z
(∞ is closest cusp of z∗).

z∗ is SL2(OK ) - reduced if it is ΓK ,∞- reduced, where

ΓK ,∞ =
{(

ε µ
0 ε−1

)
, ε ∈ O×K ,µ ∈ OK

}
.

Local coordinate (w.r.t.. lattices Λ and OK ):

ΛY = ỹ

BOK X = x∗

where Y ∈ Rn−1, X ∈ Rn and ỹi = ln y∗i
n√Ny∗

.
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Reduction algorithm in cuspidal nbhd

Then z∗ is ΓK ,∞- reduced iff

Xi ∈
[
−1

2
,

1
2

]
, 1≤ i ≤ n,

Yi ∈
[
−1

2
,

1
2

]
, 1≤ i ≤ n−1.

If z is not ΓK ,∞ reduced we can reduce:

Y by acting with ε = ε
m1
1 · · ·ε

mn
n ∈ O×K :

U (ε) =
(

ε 0
0 ε−1

)
: z∗ 7→ ε

2z∗, Yi 7→ Yi + mi .

X by acting with ζ = ∑ai αi ∈ OK :

T (ζ) =
(

1 ζ

0 1

)
: z∗ 7→ z∗+ ζ, Xi 7→ Xi + ai .

Note that the first reduction modifies X but the second leaves Y fixed.
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Remarks

Key point: can show that we find closest cusp.

Once in a cuspidal neighbourhood reduce in constant time.

The hard part is to find the closest cusp.

Elliptic points are on the boundary, i.e. can have more than one “closest”
cusp.

The fundamental domain we use is a union of cuspidal domains with
boundaries of the form

compact × “wedge” close to the cusps, and
a union exterior of surfaces of the form Sλ = {N(cz + d) = 1} where
λ = (c : d).

The “bottom” is complicated (this is where all relations in ΓK show up).
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Finding the closest cusp

Let z ∈HK and λ = a
c ∈ P1 (K ).

Then
∆(z,λ)2 = N(y)−1 N

(
(−cx + a)2 + c2y2

)
.

For each r > 0 there is only a finite (explicit!) number of pairs
(a′,c′) ∈ O2

K/O×K s.t.
∆
(
z,λ′

)
≤ r .

In fact, for i = 1, . . . ,n we have bounds on each embedding:

|σi (c)| ≤ cK r
1
2 σi

(
y−

1
2

)
,

|σi (a− cx)|2 ≤ σi
(
rc2

K y− c2y2)
Here cK = r

n−1
2

K (an explicit constant).
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Explicit bounds

The key to the proofs that the algorithms terminate are explicit versions of the
following lemmas:

Lemma

There exists a constant CK > 0 s.t. if x ∈ Rn and ε > 0 then there are
integers c,d ∈ OK , c 6= 0,

‖cx + d‖
∞
≤ ε and ‖c‖ ≤ CK

ε
.

Lemma

There exists a constant rK > 0 s.t. if α ∈ K with Nα = 1 then there exists
ε ∈ O×K such that

|σi (αε)| ≤ r
n−1

2
K .
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Choice of constants

Proposition

We can take CK = 2
1
n (covol(OK ))

2
n and

rK = max
k

{
max(|σ1 (εk )| , . . . , |σn (εk )| ,1)

min(|σ1 (εk )| , . . . , |σn (εk )| ,1)

}
.

Remark

rK ≥ 1 always. If K = Q
(√

D
)

has a fundamental unit ε0 with
σ1 (ε0) > 1 > σ2 (ε0) then rK = |σ1 (ε0)|2.
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Example Q
(√

5
)

The orders which can appear are: 3, 4, 5, 6, 8, 10, 12

The possible traces are:
m t

3 −1
4 0
5 1

2

(√
5−1

)
1
2

(
−
√

5−1
)

6 1
8 -
10 ε0 = 1

2

(√
5 + 1

)
ε∗0 = 1

2

(
−
√

5 + 1
)

12 -
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Example (contd.)

A set of reduced fixed points is:

order trace fixed pt ell. matrix

4 0 i S =
(

0 −1
1 0

)
4 0 iε∗0 SE (ε∗) =

(
0 ε∗0
−ε∗0 0

)
6 1 ρ TS =

(
1 −1
1 0

)
6 1 ρε∗0 SE (ε0)T ε3

=
(

0 ε∗0
ε0 1

)
10 ε − 1

2 ε0 + i
2

√
3− ε0 ST ε0 =

(0 −1
1 ε0

)
10 ε∗ 1

2 ε0 + i
2 ε∗0
√

3− ε∗0 T ε∗0S =
(

ε∗0 −1
1 0

)
Here ρ3 = 1 and we always choose “correct” Galois conjugates to get points
in Hn.
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Example Q
(√

3
)

t zt
1√
Ny

Y X1 X2

4a 0 −1+
√

3
2 − i 1+

√
3

2

√
2 − 1

4
1
2 − 1

2 0

4 0 −1+
√

3
2 + i 1−

√
3

2

√
2 1

4 − 1
2 − 1

2 0 ∼ 4a
4b 0 ε0i 1 − 1

2 0 0 0
4c 0 i 1 0 0 0 0

6 1 1
2 − i

(
1 +

√
3

2

)
2 − 1

2
1
2 0 0 ∼ 12a

6a 1 1
2 + 1

2 i
√

3
√

4
3 0 1

2 0 0

6b 1
√

3
2 − i

(
1√
3

+ 1
2

) √
4
3 − 1

2 0 − 1
2 −1

12a −
√

3 1
2

√
3 + 1

2 i 2 0 0 − 1
2 0
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Example Q
(√

10
)

order 4

We have two cusp classes: c0 = ∞ = [1 : 0] and c1 =
[
3 : 1 +

√
10
]

Orders: 4 (trace 0) and 6 (trace 1).

order label fixed pt close to

4 4a
(

1
2

√
10 + 3

2

)√
−4
±

∞

4 4b 1
2

√
−4 = i ∞

4 4c
(

1
4

√
10− 3

4

)√
−4
±

+ 1
2 ∞

4 4d 1
2

√
10− 1

2 + 1
4

√
−4 ∞

4 4e 5
13

√
10− 1

2 + 1
52

√
−4 c1

4 4f 129
370

√
10− 86

185 +
(
− 3

740

√
10 + 1

185

)√
−4
±

c1

Here
√
−4
±

=±2i with sign chosen depending on the embedding of
√

10.



Preliminaries The dimension formula Computations Reduction algorithm

Example Q
(√

10
)

order 4

label x N (x) y N (y)

4a 0 0
√

10−3 −1
4b 0 0 −1 1
4c 2

√
10 + 6 −4 2

√
10 + 6 −4

4d −2
√

10 + 2 −36 −2 4
4e −20

√
10 + 26 −3324 −26 676

4f −86 7396 −15
√

10−20 −1850

Note that if A is the cusp normalizing map of c1 then
label A−1z x y

4e
(
− 1

9

√
10− 7

18

)√
−4 0 7

4f
(−1

36

√
10 + 1

36

)√
−4
±

+ 1
2 −2

√
10−2 −2

√
10−2
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Example Q
(√
−10

)



Preliminaries The dimension formula Computations Reduction algorithm

Factoring matrices

Given elliptic element A:

Find fixed point z

Set z0 = z + ε s.t. z0 ∈ FΓ (well into the interior).

w0 = Az0

Find pullback of w0 in to FΓ (make sure w∗0 = z0).

Keep track of matrices used in pullback.
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Example

K = Q
(√

3
)
, z = −1+

√
3

2 − i 1+
√

3
2 A =

(
−1 −

√
3+1√

3+1 1

)
w0 = Az0 ∼ (close to 0)

w1 = Sw0 ∼ (close to a−1)

w2 = ST 1−aw1

w3 = T 1+aw2 – reduced

A = T 1+aST a−1S (as a map)

A = S2T 1+aST a−1S (in SL2(OK ))
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