		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

Dimension formulas for vector-valued Hilbert modular forms

Fredrik Strömberg (Nottingham) (j/w N.-P. Skoruppa (Siegen))

Explicit Methods for Automorphic Forms - Shanghai, March 2014

24th March 2014

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Preliminaries	The dimension formula	Computations 00000	Reduction algorithm
Possible app	lications		

- Jacobi forms over number fields
 - Same type of correspondence as over \mathbb{Q} (between scalar and vector-valued)
 - Liftings between Hilbert modular forms and Jacobi forms (Shimura lift)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Independent applications for the reduction algorithms:
 - Reduction of hyperelliptic curves

Preliminaries	Computations	Reduction algorithm
00000		
Droliminar		

Preliminaries

۲

- K/\mathbb{Q} number field of degree *n*
- O_K the ring of integers of K.
- Embeddings: $\sigma_i : K \to \mathbb{R}, 1 \le i \le n$,
- Trace and norm:

$$\operatorname{Tr} \alpha = \sum \sigma_i \alpha, \quad \operatorname{N} \alpha = \prod \sigma_i \alpha.$$

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{M}_2(K)$ we write $A_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} = \begin{pmatrix} \sigma_i(a) & \sigma_i(b) \\ \sigma_i(c) & \sigma_i(d) \end{pmatrix}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

Generalised upper half plane

• The group
$${\sf SL}_2({\sf K})\subset {\sf M}_2({\sf K})$$
 acts on

$$\mathbb{H}^n \simeq \mathbb{H} \times \cdots \times \mathbb{H} = \{(z_1, \ldots, z_n) \mid z_j \in \mathbb{H}\}$$

by

$$Az = (A_1z_1,\ldots,A_nz_n) \in \mathbb{H}^n$$

where *A_iz_i* is the usual action of *PSL*₂(ℝ) on the upper half-plane ℍ.
The (full) Hilbert modular group is defined as:

$$\Gamma_{\mathcal{K}} = \operatorname{SL}_2(\mathcal{O}_{\mathcal{K}}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathcal{O}_{\mathcal{K}}, ad - bc = 1 \right\}$$

 Important: the definition of "the" Hilbert modular group is not canonical and other choices exist.

Preliminaries 000000	The dimension formula	Computations	Reduction algorithm
Hilbert mo	dular forms		

• Let
$$k = (k_1, k_2, \dots, k_n) \in \mathbb{Z}^n$$

• If $f : \mathbb{H}^n \to \mathbb{C}$ is holomorphic and satisfies

$$f(Az) = J_A(z;k)f(z)$$

where $J_A(z;k) = \prod (c_i z_i + d_i)^{k_i}$ then we say that *f* is a Hilbert modular form on Γ_K of weight *k*.

Preliminaries		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

Vector-valued Hilbert modular forms

- Let ρ : Γ_K → GL(r, C) be a finite dimensional representation of Γ_K s.t.
 - Ker $(\rho) = \Gamma$ a finite index subgroup of Γ_K
 - If $\alpha \in Z(\Gamma_{\mathcal{K}})$ then

$$\rho(\alpha) J_{\alpha}(z;k) = \mathbf{1}_{r \times r} \qquad (*)$$

• If $f : \mathbb{H}^n \to \mathbb{C}^r$ is holomorphic and satisfies

$$f(Az) = J_A(z;k)\rho(A)f(z)$$

for all $A \in \Gamma_K$ then *f* is said to be a vector-valued Hilbert modular form of weight *k* and representation ρ .

- Denote the space of these by M_k(ρ)
- Note that (*) implies that $f(\alpha z) = \rho(\alpha) J_{\alpha}(z;k) f(z) = f(z)$
- If $f \in M_k(\rho)$ and $f = \sum f_i v_i$ then $f_i \in M_k(\Gamma)$ (scalar-valued)

$$\mathcal{S}_{k}\left(\rho\right) = \left\{ f = \sum f_{i} v_{i} \in M_{k}\left(\rho\right), : f_{i} \in \mathcal{S}_{k}\left(\Gamma\right) \right\}$$

Preliminaries 00000	The dimension formula OOOOOOOO 	Computations 00000	Reduction algorithm
Main theorem			

If $k \in \mathbb{Z}^n$ with $k \gg 2$ then:

$$\dim S_k(\rho) = \frac{1}{2} \dim \rho \cdot \zeta_k(-1) \cdot N(k-1) +$$
"elliptic terms"
+"parabolic terms

- Identity (main) term: $\zeta_{\mathcal{K}}(-1)$ (a rational number)
 - Example: $\zeta_{\mathbb{Q}(\sqrt{5})} = \frac{1}{30}, \zeta_{\mathbb{Q}(\sqrt{193})}(-1) = 16 + \frac{1}{3}, \zeta_{\mathbb{Q}(\sqrt{1009})}(-1) = 211.$
- Finite order ("elliptic") terms
- Parabolic ("cuspidal") term

Remark

We have also shown the corresponding theorem for half-integral weight.

Preliminaries	The dimension formula	Computations	Reduction algorithm
00000	○●○○○○○○	00000	
The elliptic ter	ms		

"elliptic terms" =
$$\sum_{\mathfrak{U}} \frac{1}{|\mathfrak{U}|} \sum_{\pm 1 \neq A \in \mathfrak{U}} \chi_{\rho}(A) \cdot E(A)$$

here ${\mathfrak U}$ runs through elliptic conjugacy classes and

$$\begin{split} \chi_{\rho}(A) &= & \operatorname{Tr}\rho(A), \\ E(A) &= & \prod_{i=1}^{n} \frac{r(A_{i})^{1-k_{\sigma}}}{r(A_{i}) - r(A_{i})^{-1}} \\ r(A) &= & \frac{1}{2} \left(t + \operatorname{sgn}(c) \sqrt{t^{2} - 4} \right), t = \operatorname{Tr}A \end{split}$$

Note that if $Az^* = z^*$ then $r(A) = cz^* + d = j_A(z^*)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Cusps of S	$SL_2(O_K)$		

- Cusp: $\lambda = (\rho : \sigma) \in \mathbb{P}_1(K)$
- Fractional ideal: $\mathfrak{a}_{\lambda} = (\rho, \sigma)$
- $\lambda \sim \mu \pmod{\operatorname{SL}_2(\mathcal{O}_K)} \Leftrightarrow \mathfrak{a}_\lambda = (\alpha) \mathfrak{a}_\mu$
- The number of cusp classes equals the class number of K (we assume this is = 1).
- Cusp-normalizing map: $\exists \xi, \eta \in \mathfrak{a}_{\lambda}^{-1}$ s.t.

$$\begin{array}{lll} \mathcal{A}_{\lambda} & = & \left(\begin{array}{cc} \rho & \xi \\ \sigma & \eta \end{array} \right) \in \mathrm{SL}_2(\mathcal{K}), \\ \mathcal{A}_{\lambda}^{-1} \mathrm{SL}_2(\mathcal{O}_{\mathcal{K}}) \mathcal{A}_{\lambda} & = & \mathrm{SL}_2\left(\mathfrak{a}^2 \oplus \mathcal{O}_{\mathcal{K}}\right) \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

The dimension formula	Computations	Reduction algorithm
0000000		

Cuspidal term

Contribution of the cusp λ is the value at s = 1 of a twisted Shimizu L-series

$$L(s;\lambda,\rho) = \frac{\sqrt{|d_{K}|} N(\mathfrak{a}_{\lambda}^{-2})}{(-2\pi i)^{n}} \sum_{0 \neq a \in \mathfrak{a}_{\lambda}^{-2}/U^{2}} \chi_{\overline{\rho}} \left(A_{\lambda}^{-1} \left(\begin{smallmatrix} 1 & a \\ 0 & 1 \end{smallmatrix}\right) A_{\lambda}\right) \frac{\operatorname{sgn}(N(a))}{|N(a)|^{s}}.$$

The "untwisted" L-series ($\rho=1$) is known to have analytic cont. and functional equation

$$\Lambda(s) = \Gamma\left(\frac{s+1}{2}\right)^n \left(\frac{\operatorname{vol}(O_K)}{\pi^{n+1}}\right)^s L(s; O_K, 1) = \Lambda(1-s)$$

- It is easy to see that the L-function for ρ ≠ 1 also has AC. FE is more complicated (cf. Hurwitz-Lerch).
- If K has a unit of norm -1 then L(s; O_K, 1) = 0 (conditions on ρ in general)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries	The dimension formula 0000●000	Computations 00000	Reduction algorithm
Notes on t	ha I -sarias		

• Note that $L(s; O_K, 1)$ is proportional to

$$L(s,\chi) = \sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}} \frac{\chi(\mathfrak{a})}{|N(\mathfrak{a})|^{s}}$$

where the sum is over all integral ideals of $\mathcal{O}_{\mathcal{K}}$ and $\chi(\mathfrak{a}) = \text{sgn}(N(\mathfrak{a}))$.

- Studied by Hecke, Siegel, Meyer, Hirzebruch and others.
- Can be expressed in terms of Dedekind sums (Siegel)

Preliminaries	The dimension formula	Computations	Reduction algorithm
	00000000		
Evampla	$\mathbb{D}(\sqrt{3})$		
	$\mathcal{L}(\nabla \mathbf{J})$		

- By Siegel (see e.g. Gundlach): $L(1, \operatorname{sgn} \circ N) = \frac{\pi^2}{12\sqrt{3}}$.
- Our parabolic term is then:

$$L(1;\infty,1)=-\frac{1}{6}.$$

• Example $k_1 = k_2 = 2$: Scalar term

$$\frac{1}{2}\zeta_{\sqrt{3}}(-1) = \frac{1}{12}$$

• Elliptic terms (there are 3 order 4 classes, 2 order 6 and 1 order 12):

 $\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{9} + \frac{1}{9} + \frac{35}{72} = 1 + \frac{1}{12}$

• dim
$$S_{2,2}(1) = 1$$
.

- Example $k_1 = k_2 = 4$:
 - Scalar term $= \frac{3}{4}$
 - Elliptic terms:

$$\frac{1}{8} + \frac{1}{8} + \frac{1}{8} - \frac{2}{9} - \frac{2}{9} + \frac{35}{72} = \frac{5}{12}$$

• dim $S_{4,4}(1) = \frac{3}{4} + \frac{5}{12} - \frac{1}{6} = 1.$

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Evampla			

We can compute dimensions of congruence subgroups.

Let $\mathcal{K} = \mathbb{Q}\left(\sqrt{5}\right), \mathfrak{m} = \left(\sqrt{5}\right)$ and consider

$$\Gamma_{0}\left(\mathfrak{m}\right) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_{\mathcal{K}}, \ c \in \mathfrak{m} \right\}$$

and let $\rho=\text{Ind}_{\Gamma_0(\mathfrak{m})}^{\Gamma_{\mathcal{K}}}$ be the induced representation. Then we can compute the dimensions:

$k_1 = k_2$	dim $S_k(\Gamma_K)$	$\dim S_k(\Gamma_0(\mathfrak{m}))$
2	1	1
4	0	0
6	1	3
8	1	5

Preliminaries 00000	The dimension formula 0000000●	Computations	Reduction algorithm
Conjugacy cl	asses		

- Scalar if $A = \pm 1$
- Elliptic: A has finite order.
- Parabolic: If A is not scalar but $TrA = \pm 2$.
- Mixed (these do not contribute to the dimension formula).

Note: the names "elliptic" and "parabolic" are not standard for Hilbert modular groups.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

▲□▶▲□▶▲□▶▲□▶ □ のQで

There are two main computational tasks

- Elliptic contribution:
 - The terms are easy to compute
 - The problem is to find the classes (representatives)
- Ouspidal contribution:
 - The conjugacy classes are easy to find.
 - The problem is to compute $L(1; O_K, \rho)$.

		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

How do we find elliptic conjugacy classes?

- Characterisation / parametrisation of elliptic elements: $(t; x, y) \rightarrow z_{t,x,y}$
- This is an infinite list!
- Use a reduction algorithm for Γ_K to obtain a finite set of reduced points.

• Choice of fundamental domain for Γ_K .

	Computations	Reduction algorithm
	00000	

Which orders can appear?

Lemma

If A in Γ_K has order m then $\varphi(m) = 2d$ where d divides n = degK.

If $K = \mathbb{Q}(\sqrt{D})$ then the possible orders are:

- 3,4,6 (solutions of $\varphi(l) = 2$), and
- 5,8,10,12 (solutions of $\varphi(I) = 4$)

		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

Parametrisation of elliptic elements

Lemma

Let \mathfrak{a} be a fractional ideal and $t\in K$ be such that $|t|\ll 2$. Then

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \lambda(A) = \frac{a - d + \sqrt{t^2 - 4}}{2c}$$

is a bijection between the set of elements of $SL_2(\mathfrak{a} \oplus \mathcal{O}_K)$ with trace t and

$$\left\{z_{t,x,y}=\frac{x+\sqrt{t^2-4}}{2y}\in\mathbb{H}_{K}:x\in\mathcal{O}_{K},y\in\mathfrak{a},\ x^2-t^2+4\in4\mathcal{O}_{K}\right\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm

To compute elliptic classes

- We choose a (closed) fundamental domain $\mathcal{F}_{\mathcal{K}}$ of $\Gamma_{\mathcal{K}}$.
- There are EXPLICIT bounds on x, y for $z_{t,x,y} \in \mathcal{F}_K \to$ finite list.
- Note that there are formulas for the number of elliptic elements (for quadratic *K*) but we need to know the actual matrices.
- Main problem:
 - How do we know whether two reduced elliptic points (in the fundamental domain) are equivalent or not?
 - The identifying matrix can be complicated.
 - IDEALLY: follow the "bottom" of fundamental domain to get generators and relations.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Distance t	o a cusp		

Distance to infinity

$$\Delta(z,\infty) = \mathrm{N}(y)^{-\frac{1}{2}}$$

Distance to other cusps

$$\Delta(z,\lambda)=\Delta(A_{\lambda}^{-1}z,\infty).$$

• λ is a closest cusp to z if

$$\Delta(z,\lambda) \leq \Delta(z,\mu), \quad \forall \mu \in \mathbb{P}^1(\mathcal{K}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Lattices re	elated to K		

• \mathcal{O}_K the ring of integers with integral basis $1 = \alpha_1, \alpha_2, \dots \alpha_n$

$$\mathcal{O}_{\mathcal{K}} \simeq \alpha_1 \mathbb{Z} \oplus \cdots \oplus \alpha_n \mathbb{Z},$$

• \mathcal{O}_{K}^{\times} the unit group with generators $\pm 1, \varepsilon_{1}, \dots, \varepsilon_{n-1}$

$$\mathcal{O}_{K}^{\times} \simeq \langle \pm 1 \rangle \times \langle \epsilon_{1} \rangle \times \cdots \langle \epsilon_{n-1} \rangle$$

• A the logarithmic unit lattice: $v_i = (\ln |\sigma_1 \varepsilon_i|, ..., \ln |\sigma_{n-1} \varepsilon_i|)$

$$\Lambda = v_1 \mathbb{Z} \oplus \cdots \oplus v_{n-1} \mathbb{Z}.$$

The volume of Λ is called the regulator Reg(K).

- The volume of O_K is $|d_K|^{\frac{1}{2}}$, d_K is the discriminant of *K*.
- We denote Gram matrices of the above lattices by B_{O_K} and Λ .

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Example Q	$\left(\sqrt{5}\right)$		

In $\mathbb{Q}\left(\sqrt{5}\right)$ we have the fundamental unit ϵ and its conjugate ϵ^* :

$$\epsilon_0=\frac{1}{2}\left(1+\sqrt{5}\right),\quad \epsilon^*=-\epsilon_0^{-1}=\frac{1}{2}\left(1-\sqrt{5}\right).$$

And

$$\begin{array}{rcl} \mathcal{O}_{\mathcal{K}} &\simeq & \mathbb{Z} + \epsilon_0 \mathbb{Z}, \\ \Lambda &\simeq & \mathbb{Z} \ln \left| \frac{1 + \sqrt{5}}{2} \right. \end{array}$$

with the volume given by

$$\begin{aligned} |\mathcal{O}_{\mathcal{K}}| &= \left| \det \left(\begin{array}{cc} \frac{1}{2} \left(1 + \sqrt{5} \right) & \frac{1}{2} \left(1 - \sqrt{5} \right) \\ 1 & 1 \end{array} \right) \right| &= \sqrt{5} \\ |\Lambda| &= \left| \ln \frac{1}{2} \left(1 + \sqrt{5} \right) \right| &\simeq 0.4812... \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries 00000	The dimension formula	Computations	Reduction algorithm
Generators			

It is known that $SL_2(\mathcal{O}_K)$ is generated by (for example)

$$T^{\alpha} = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}, \alpha = \alpha_{1}, \dots, \alpha_{n},$$

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

$$E(\varepsilon) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}, \varepsilon = -1, \varepsilon_{1}, \dots, \varepsilon_{n-1}$$

Problem: can not generalise Poincaré from $SL_2(\mathbb{R})$. That is we can not obtain a fundamental domain with sides identified by the above generators.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Preliminaries	The dimension formula	Computations	Reduction algorithm
00000	00000000	00000	000000000000000000000000000000000000000

Reduction algorithm for $z \in \mathbb{H}_{K}$

- For simplicity assume class number one.
- Find closest cusp λ and set z* = x* + iy* = A_λ⁻¹z
 (∞ is closest cusp of z*).
- z^* is $SL_2(\mathcal{O}_{\mathcal{K}})$ reduced if it is $\Gamma_{\mathcal{K},\infty}$ reduced, where

$$\Gamma_{K,\infty} = \left\{ \begin{pmatrix} \epsilon & \mu \\ 0 & \epsilon^{-1} \end{pmatrix}, \ \epsilon \in \mathcal{O}_{K}^{\times}, \mu \in \mathcal{O}_{K} \right\}.$$

• Local coordinate (w.r.t.. lattices Λ and O_{κ}):

$$\begin{array}{rcl} \Lambda Y &=& \tilde{y} \\ B_{\mathcal{O}_{\mathcal{K}}}X &=& x^* \end{array}$$

where $Y \in \mathbb{R}^{n-1}$, $X \in \mathbb{R}^n$ and $\tilde{y}_i = \ln \frac{y_i^*}{\sqrt[n]{Ny^*}}$.

		Computations	Reduction algorithm
00000	0000000	00000	000000000000000000000000000000000000000

Reduction algorithm in cuspidal nbhd

• Then z^* is $\Gamma_{K,\infty}$ - reduced iff

$$\begin{aligned} X_i &\in \left[-\frac{1}{2}, \frac{1}{2}\right], \ 1 \leq i \leq n, \\ Y_i &\in \left[-\frac{1}{2}, \frac{1}{2}\right], \ 1 \leq i \leq n-1. \end{aligned}$$

- If z is not Γ_{K,∞} reduced we can reduce:
 - Y by acting with $\varepsilon = \varepsilon_1^{m_1} \cdots \varepsilon_n^{m_n} \in \mathcal{O}_K^{\times}$:

$$U(\varepsilon) = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix} : z^* \mapsto \varepsilon^2 z^*, \ Y_i \mapsto Y_i + m_i.$$

• X by acting with $\zeta = \sum a_i \alpha_i \in O_K$:

$$T(\zeta) = \begin{pmatrix} 1 & \zeta \\ 0 & 1 \end{pmatrix} : z^* \mapsto z^* + \zeta, \ X_i \mapsto X_i + a_i.$$

• Note that the first reduction modifies X but the second leaves Y fixed.

Preliminaries 00000	The dimension formula	Computations	Reduction algorithm
Remarks			

- Key point: can show that we find closest cusp.
- Once in a cuspidal neighbourhood reduce in constant time.
- The hard part is to find the closest cusp.
- Elliptic points are on the boundary, i.e. can have more than one "closest" cusp.
- The fundamental domain we use is a union of cuspidal domains with boundaries of the form
 - compact \times "wedge" close to the cusps, and
 - a union exterior of surfaces of the form $S_{\lambda} = \{N(cz + d) = 1\}$ where $\lambda = (c : d)$.
- The "bottom" is complicated (this is where all relations in Γ_K show up).

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Finding the	closest cusp		

• Let
$$z \in \mathbb{H}_{K}$$
 and $\lambda = \frac{a}{c} \in \mathbb{P}^{1}(K)$.

• Then

$$\Delta(z,\lambda)^2 = \mathrm{N}(y)^{-1} \mathrm{N}\left((-cx+a)^2 + c^2 y^2\right).$$

• For each r > 0 there is only a finite (explicit!) number of pairs $(a', c') \in O_K^2 / O_K^{\times}$ s.t. $\Delta(z, \lambda') \leq r.$

• In fact, for
$$i = 1, ..., n$$
 we have bounds on each embedding:

$$\begin{aligned} |\sigma_i(c)| &\leq c_{\mathcal{K}} r^{\frac{1}{2}} \sigma_i\left(y^{-\frac{1}{2}}\right), \\ |\sigma_i(a-cx)|^2 &\leq \sigma_i\left(rc_{\mathcal{K}}^2 y - c^2 y^2\right) \end{aligned}$$

• Here $c_{\mathcal{K}} = r_{\mathcal{K}}^{\frac{n-1}{2}}$ (an explicit constant).

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Evaliait by			
	Dunas		

The key to the proofs that the algorithms terminate are explicit versions of the following lemmas:

Lemma

There exists a constant $C_K > 0$ s.t. if $x \in \mathbb{R}^n$ and $\varepsilon > 0$ then there are integers $c, d \in O_K$, $c \neq 0$,

$$\|cx+d\|_{\infty} \leq \varepsilon \text{ and } \|c\| \leq \frac{C_{\mathcal{K}}}{\varepsilon}.$$

Lemma

There exists a constant $r_K > 0$ s.t. if $\alpha \in K$ with $N\alpha = 1$ then there exists $\epsilon \in O_K^{\times}$ such that

$$|\sigma_i(\alpha \varepsilon)| \leq r_K^{\frac{n-1}{2}}.$$

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm

Choice of constants

Proposition

We can take $C_K = 2^{\frac{1}{n}} (covol(O_K))^{\frac{2}{n}}$ and

$$r_{\mathcal{K}} = \max_{k} \left\{ \frac{\max\left(|\sigma_{1}\left(\varepsilon_{k}\right)|, \ldots, |\sigma_{n}\left(\varepsilon_{k}\right)|, 1\right)}{\min\left(|\sigma_{1}\left(\varepsilon_{k}\right)|, \ldots, |\sigma_{n}\left(\varepsilon_{k}\right)|, 1\right)} \right\}.$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Remark

 $r_{\mathcal{K}} \geq 1$ always. If $\mathcal{K} = \mathbb{Q}\left(\sqrt{D}\right)$ has a fundamental unit ε_0 with $\sigma_1(\varepsilon_0) > 1 > \sigma_2(\varepsilon_0)$ then $r_{\mathcal{K}} = |\sigma_1(\varepsilon_0)|^2$.

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Example	$\mathbb{O}\left(\sqrt{5}\right)$		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- The orders which can appear are: 3, 4, 5, 6, 8, 10, 12
- The possible traces are:

т	t	
3	-1	
4	0	
5	$\frac{1}{2}(\sqrt{5}-1)$	$\frac{1}{2}(-\sqrt{5}-1)$
6	1	
8	-	
10	$\varepsilon_0 = \frac{1}{2} \left(\sqrt{5} + 1 \right)$	$\varepsilon_0^* = \frac{1}{2} \left(-\sqrt{5} + 1 \right)$
12	-	

	Computations	Reduction algorithm
		000000000000000000000000000000000000000

Example (contd.)

A set of reduced fixed points is:

order	trace	fixed pt	ell. matrix
4	0	i	$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
4	0	i ϵ_0^*	$SE(\epsilon^*) = \begin{pmatrix} 0 & \epsilon_0^* \\ -\epsilon_0^* & 0 \end{pmatrix}$
6	1	ρ	$TS = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$
6	1	$ ho \epsilon_0^*$	$SE(\varepsilon_0) T^{\varepsilon^3} = \begin{pmatrix} 0 & \varepsilon_0^* \\ \varepsilon_0 & 1 \end{pmatrix}$
10	ε	$-\frac{1}{2}\varepsilon_0+\frac{i}{2}\sqrt{3-\varepsilon_0}$	$ST^{\epsilon_0} = \begin{pmatrix} 0 & -1 \\ 1 & \epsilon_0 \end{pmatrix}$
10	ε*	$\frac{1}{2}\varepsilon_0 + \frac{i}{2}\varepsilon_0^*\sqrt{3-\varepsilon_0^*}$	$T^{\varepsilon_0^*}S = \left(egin{array}{c} \varepsilon_0^* & -1 \ 1 & 0 \end{array} ight)$

Here $\rho^3=1$ and we always choose "correct" Galois conjugates to get points in $\mathbb{H}^n.$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Example Q	$2(\sqrt{3})$		

	t	Zt	$\frac{1}{\sqrt{Ny}}$	Y	<i>X</i> ₁	X ₂		
4 <i>a</i>	0	$\frac{-1+\sqrt{3}}{2}-i\frac{1+\sqrt{3}}{2}$	$\sqrt{2}$	$-\frac{1}{4}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	
4	0	$\frac{-1+\sqrt{3}}{2}+i\frac{1-\sqrt{3}}{2}$	$\sqrt{2}$	$\frac{1}{4}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	\sim 4a
4 <i>b</i>	0	ε ₀ i	1	$-\frac{1}{2}$	0	0	0	
4 <i>c</i>	0	i	1	0	0	0	0	
6	1	$\frac{1}{2}-i\left(1+\frac{\sqrt{3}}{2}\right)$	2	$-\frac{1}{2}$	<u>1</u> 2	0	0	~ 12 <i>a</i>
6 <i>a</i>	1	$\frac{1}{2} + \frac{1}{2}i\sqrt{3}$	$\sqrt{\frac{4}{3}}$	0	$\frac{1}{2}$	0	0	
6 <i>b</i>	1	$\frac{\sqrt{3}}{2} - i\left(\frac{1}{\sqrt{3}} + \frac{1}{2}\right)$	$\sqrt{\frac{4}{3}}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1	
12 <i>a</i>	$-\sqrt{3}$	$\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	2	0	0	$-\frac{1}{2}$	0	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Computations

Reduction algorithm

Example $\mathbb{Q}(\sqrt{10})$ order 4

We have two cusp classes: $c_0 = \infty = [1:0]$ and $c_1 = [3:1+\sqrt{10}]$

Orders: 4 (trace 0) and 6 (trace 1).

order	label	fixed pt	close to
4	4 <i>a</i>	$\left(\frac{1}{2}\sqrt{10}+\frac{3}{2}\right)\sqrt{-4}^{\pm}$	∞
4	4 <i>b</i>	$\frac{1}{2}\sqrt{-4} = i$	8
4	4 <i>c</i>	$\left(\frac{1}{4}\sqrt{10}-\frac{3}{4}\right)\sqrt{-4}^{\pm}+\frac{1}{2}$	∞
4	4 <i>d</i>	$\frac{1}{2}\sqrt{10} - \frac{1}{2} + \frac{1}{4}\sqrt{-4}$	8
4	4 <i>e</i>	$\frac{5}{13}\sqrt{10} - \frac{1}{2} + \frac{1}{52}\sqrt{-4}$	C ₁
4	4 <i>f</i>	$\frac{129}{370}\sqrt{10} - \frac{86}{185} + \left(-\frac{3}{740}\sqrt{10} + \frac{1}{185}\right)\sqrt{-4}^{\pm}$	<i>C</i> ₁

Here $\sqrt{-4}^{\pm} = \pm 2i$ with sign chosen depending on the embedding of $\sqrt{10}$.

Preliminaries

The dimension form

Computation

Reduction algorithm

Example $\mathbb{Q}(\sqrt{10})$ order 4

label	X	N(x)	У	N(y)
4 <i>a</i>	0	0	$\sqrt{10}-3$	-1
4 <i>b</i>	0	0	-1	1
4 <i>c</i>	$2\sqrt{10}+6$	-4	$2\sqrt{10}+6$	-4
4 <i>d</i>	$-2\sqrt{10}+2$	-36	-2	4
4 <i>e</i>	$-20\sqrt{10}+26$	-3324	-26	676
4 <i>f</i>	-86	7396	$-15\sqrt{10}-20$	-1850

Note that if A is the cusp normalizing map of c_1 then

label	$A^{-1}z$	X	У	
4 <i>e</i>	$\left(-\frac{1}{9}\sqrt{10}-\frac{7}{18}\right)\sqrt{-4}$	0	7	
4 <i>f</i>	$\left(\frac{-1}{36}\sqrt{10}+\frac{1}{36}\right)\sqrt{-4}^{\pm}+\frac{1}{2}$	$-2\sqrt{10}-2$	$-2\sqrt{10}-2$	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm
Example $\mathbb{Q}(\sqrt{1+1})$	(-10)		

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm		
Factoring matrices					

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given elliptic element A:

- Find fixed point z
- Set $z_0 = z + \varepsilon$ s.t. $z_0 \in \mathcal{F}_{\Gamma}$ (well into the interior).
- $w_0 = Az_0$
- Find pullback of w_0 in to \mathcal{F}_{Γ} (make sure $w_0^* = z_0$).
- Keep track of matrices used in pullback.

Preliminaries 00000	The dimension formula	Computations 00000	Reduction algorithm ○○○○○○○○○○○○○○○○○○○
Example			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$K = \mathbb{Q}(\sqrt{3}), z = \frac{-1+\sqrt{3}}{2} - i\frac{1+\sqrt{3}}{2} A = \begin{pmatrix} -1 & -\sqrt{3}+1\\ \sqrt{3}+1 & 1 \end{pmatrix}$$

•
$$w_0 = Az_0 \sim$$
 (close to 0)

•
$$w_2 = ST^{1-a}w_1$$

•
$$w_3 = T^{1+a}w_2$$
 – reduced

•
$$A = T^{1+a}ST^{a-1}S$$
 (as a map)

•
$$A = S^2 T^{1+a} S T^{a-1} S$$
 (in $SL_2(O_K)$)

	Computations	Reduction algorithm
		00000000000000000000

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで