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Possible applications

@ Jacobi forms over number fields

e Same type of correspondence as over Q (between scalar and
vector-valued)
o Liftings between Hilbert modular forms and Jacobi forms (Shimura lift)

@ Independent applications for the reduction algorithms:

e Reduction of hyperelliptic curves
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Preliminaries

K /Q number field of degree n

Ok the ring of integers of K.
Embeddings: 6;: K - R, 1 </ <n,
Trace and norm:

Tro.= ) oja, Na=]]ojo.

o A= (35) eMa(K)wewrite A= (25) = (S o).
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Generalised upper half plane

@ The group SL, (K) C M2 (K) acts on
H'~Hx---xH={(z,...,2,) | z € H}

by
Az = (A1Z1,...,AnZn) cH"

where A,z; is the usual action of PSLy(R) on the upper half-plane H.
@ The (full) Hilbert modular group is defined as:

Mk =SL2(0k) ={(2%),a.b,c,d € Ox,ad—bc=1}

@ Important: the definition of “the” Hilbert modular group is not canonical
and other choices exist.
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Hilbert modular forms

o Letk= (k1,k2,...,kn) ez
e If f: H" — C is holomorphic and satisfies

f(Az) =Ja(z: k) f(2)

where Ja(z; k) =[1(cizi+ d,-)k’ then we say that f is a Hilbert modular
form on Ik of weight k.
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Vector-valued Hilbert modular forms

Let p : T'x — GL(r,C) be a finite dimensional representation of 'k s.t.

o Ker(p) =T afinite index subgroup of 'k
o lfae Z(Tk) then

p(a)Joc(Z;k):1r><r *)
If f: H” — C" is holomorphic and satisfies

f(Az) = Ja(z:k)p (A)1(2)

for all A € [k then f is said to be a vector-valued Hilbert modular form of
weight k and representation p.

Denote the space of these by M (p)
Note that (*) implies that f(oz) = p () Jo (2: k) F(2) = f(2)
If f € Mk (p) and f =Y fiv; then f; € M (") (scalar-valued)

Sk(p)={f=Y fivie Mc(p),: fic Sk(N}
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Main theorem

If k € Z" with k > 2 then:

dim Sk (p)

1
5dimp~§K(—1)~N(k—1)
+"elliptic terms”
+"parabolic terms

@ Identity (main) term: {x (—1) (a rational number)

o Example: (o 5) = 35: So(yss) (1) = 16+ 3. Lo yoms) (—1) =211
@ Finite order (“elliptic”) terms
@ Parabolic (“cuspidal”) term

We have also shown the corresponding theorem for half-integral weight. \
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The elliptic terms

1
"elliptic terms" =} T Y, % (A)-E(A)
U +1£Aell

here {1 runs through elliptic conjugacy classes and

Xp (A) = Trp(A),
B n I’(A,)17k°
£ = 1) =y
rA) = %(H—sgn(c)\/H),t:TrA

Note that if Az* = z* then r (A) = cz* +d = ja(2*).
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Cusps of SLo(Ok)

Cusp: A= (p: o) € Py (K)
Fractional ideal: a; = (p, o)
A~ u (mod SLy(Ok)) < a), = () ay

The number of cusp classes equals the class number of K (we assume
thisis = 1).

Cusp-normalizing map: 3§,n € a;‘ s.t.

A = (g 1%)ESLZ(K),
A'SLo(Ok)A, = SLa(a®® Ok)
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Cuspidal term

Contribution of the cusp A is the value at s = 1 of a twisted Shimizu L-series

|dkIN(a;?)

a) 4y SIN(N(a)
i Da)

IN(a)[®

Y w(AT(

0£aca; /U2

L(Sﬂ"»p) =

The “untwisted” L-series (p = 1) is known to have analytic cont. and
functional equation

A(S):r(s—l—1)n<V0|(OK)>SL(S;OK’1):A(1 9

2 1

@ lItis easy to see that the L-function for p # 1 also has AC. FE is more
complicated (cf. Hurwitz-Lerch).

@ If K has a unit of norm —1 then L(s; Ok, 1) = 0 (conditions on p in
general)
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Notes on the L-series

@ Note that L(s; Ok, 1) is proportional to

x(a)
L(s,x)=
o;éaZQ:OK IN(a)°
where the sum is over all integral ideals of Ok and % (a) = sgn (N (a)).
@ Studied by Hecke, Siegel, Meyer, Hirzebruch and others.
@ Can be expressed in terms of Dedekind sums (Siegel)
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Example Q (v/3)

2

@ By Siegel (see e.g. Gundlach): L(1,sgnoN) = TN
@ Our parabolic term is then:

1

@ Example ky = kp = 2: Scalar term

1 1
Soa(=1)=1
o Elliptic terms (there are 3 order 4 classes, 2 order 6 and 1 order 12):
T 1185 1
8 8 8 9 9 72 12
° dim8212 (1) =1.
@ Example k1 = kp = 4:
o Scalar term = 3
o Elliptic terms:

o dimSss(1)=3+35-1=1.
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Example

We can compute dimensions of congruence subgroups.

Let K =Q(v/5), m = (v/5) and consider
Fo(m)={(25) elk, cem}

andletp = Indpg(m) be the induced representation. Then we can compute
the dimensions:

[ ki =k | dimSc(Tk) | dim S (To(m)) |

2 1 1
4 0 0
6 1 3
8 1 5
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Conjugacy classes

@ Scalarif A= %1

@ Elliptic: A has finite order.

@ Parabolic: If Ais not scalar but TrA = £-2.

@ Mixed (these do not contribute to the dimension formula).

Note: the names “elliptic” and “parabolic” are not standard for Hilbert modular
groups.
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There are two main computational tasks

@ Elliptic contribution:

o The terms are easy to compute
e The problem is to find the classes (representatives)

@ Cuspidal contribution:

@ The conjugacy classes are easy to find.
o The problem is to compute L(1; Ok, p).



Computations
(o] lele]e]

How do we find elliptic conjugacy classes?

@ Characterisation / parametrisation of elliptic elements: (t;x,y) — ztx,
@ This is an infinite list!

@ Use a reduction algorithm for 'k to obtain a finite set of reduced points.
@ Choice of fundamental domain for [k.
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Which orders can appear?

If Ain Tk has order m then @ (m) = 2d where d divides n = degK.

If K =Q (v/D) then the possible orders are:
@ 3,4,6 (solutions of ¢ (/) =2), and
@ 5,8,10,12 (solutions of ¢ (/) = 4)
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Parametrisation of elliptic elements

Let a be a fractional ideal and t € K be such that [t| < 2. Then

_a-d+Vtr—-4

A= (35) > 1(4) =

is a bijection between the set of elements of SL, (a & Ok) with trace t and

x+Vtt—4
{2,7,(7},_2yeHK :XE Ok, y€aq, x2—t2+4€4OK}.
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To compute elliptic classes

@ We choose a (closed) fundamental domain Fx of Ik.
@ There are EXPLICIT bounds on x, y for z; v, € Fx — finite list.
@ Note that there are formulas for the number of elliptic elements (for
quadratic K) but we need to know the actual matrices.
@ Main problem:
o How do we know whether two reduced elliptic points (in the fundamental
domain) are equivalent or not?
o The identifying matrix can be complicated.

o IDEALLY: follow the “bottom” of fundamental domain to get generators and
relations.
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Distance to a cusp

@ Distance to infinity
1
A(z,0) =N(y) 2
@ Distance to other cusps
A(z,N)=A (Afz,oo) .
@ Ais aclosest cusp to z if

A(z,2) < A(zy), VueP'(K).
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Lattices related to K

@ Ok the ring of integers with integral basis 1 = o1, 0o, ... 0,
Ok ~0Z®D- - Bon,
@ O the unit group with generators +1,€1,...,€5_1
Of =~ (1) x (&) X (1)
@ A the logarithmic unit lattice: v; = (In|c1€i],...,In|cp_1€])
N=wZD-- - DVvy_1Z.

The volume of A is called the regulator Reg (K).
@ The volume of Ok is |dK|1§, dk is the discriminant of K.
@ We denote Gram matrices of the above lattices by Bo, and A.
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Example Q (v/5)

In Q@ (v/5) we have the fundamental unit € and its conjugate &*:

80:%(1+\@), 8*2786122(17\£>.

And

Ok =~ Z+¢Z,

1+V5
2

AN ~ Zln

with the volume given by

oo H05V9) 30799 g

| Ok| ]

A=

|
In2<1+\/5)'~0.4812...
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Generators

It is known that SL,( Ok ) is generated by (for example)

1 o
T = (0 1 ),(X:(th-aam
0o —1
o= (14)
e 0
E(E) = (O 871 )ae__1»€1a"'v£n1

Problem: can not generalise Poincaré from SLo(R). That is we can not
obtain a fundamental domain with sides identified by the above generators.
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Reduction algorithm for z € Hk

@ For simplicity assume class number one.

@ Find closest cusp A and set z* = x* + iy* = A;1z
(oo is closest cusp of z*).

@ z*is SLy(Ok) - reduced if it is Ik - reduced, where

MKeo = {(:»;851) , €€ O;é,,uE OK}.
@ Local coordinate (w.r.t.. lattices A and Ok):

AY = j
BOKX = x*

—1 e v
where Y e R™™1 X € R7and j; =1In Ny
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Reduction algorithm in cuspidal nbhd

@ Then z" is Ik - reduced iff

11
)(I |:_7:|71< <n7
2°2
1
Y ——,=,1<i<n-1
2°2

@ If zis not I .. reduced we can reduce:
o Y by actingwithe =€" ---en" € O
U(s):(g V)2 €225, Ve Vit my
e X by acting with { =Y a;a; € Ok:
T(Q) = (g%) 2 2 X X+ ay.

o Note that the first reduction modifies X but the second leaves Y fixed.
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REINES

Key point: can show that we find closest cusp.
Once in a cuspidal neighbourhood reduce in constant time.
The hard part is to find the closest cusp.

Elliptic points are on the boundary, i.e. can have more than one “closest”
cusp.

@ The fundamental domain we use is a union of cuspidal domains with
boundaries of the form

@ compact x “wedge” close to the cusps, and
@ aunion exterior of surfaces of the form S, = {N(cz+ d) = 1} where
A=(c:d).

@ The “bottom” is complicated (this is where all relations in ' show up).
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Finding the closest cusp

o LetzeHkand A= 2 e P'(K).

@ Then
A(zA)2=N(y)'N ((—cx+a)2+c2y2) .

@ For each r > 0 there is only a finite (explicit!) number of pairs
(d,c) € 02/0% st
AzN)<r.

@ Infact, for i =1,...,nwe have bounds on each embedding:
loi(c)] < kI G (y’%) 3
loi(a—cx)P < oi(rcky — cPy?)

n=1
@ Here cx =r,* (an explicit constant).
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Explicit bounds

The key to the proofs that the algorithms terminate are explicit versions of the
following lemmas:

There exists a constant Cx > 0 s.t. if x € R" and € > 0 then there are
integers c¢,d € Ok, ¢ # 0,

Ck

llex +d||.. <eand |c|| < -

There exists a constant ri > 0 s.t. if ot € K with Now = 1 then there exists
€ € Og such that

n—1
loi(ae)| < r” .
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Choice of constants

We can take Cx = 2% (covol(OK))% and

max(|cs1 (Sk)‘,.~~7|(5n(£k)|71) } .

rK_m;?X{ min (|61 (&)|,- -, |0n (ek)],1)

| \

Remark
rk > 1 always. If K = Q (v/D) has a fundamental unit &, with
o1 (g0) > 1> 02 (&) then rx = |07 (g0)]?.

N,
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Example Q (v/5)

@ The orders which can appear are: 3, 4, 5, 6, 8, 10, 12
@ The possible traces are:

Lm | t \ |
3 —1

4 0

s ST | ECvET]

6 1

8

10 [ eo=3(v5+1) | gg=2(—V5+1)
12 -
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A set of reduced fixed points is:

[ order | trace | fixed pt \ ell. matrix
4 0 i s=(
4 0 i€} SE(e") = ( OS 85’)
6 1 p S=(1)
6 1 pe SE(go) T = (; 810)
10 e | —1€0+25vV3—g st =(0.))
10 | e [feotin/ag| THs=(5)

Here p® = 1 and we always choose “correct” Galois conjugates to get points

in H".
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Example Q (v/3)

f [V [*M %] |

I I D T . [ %
—14+v8 _ ;143 1 ] 1

4a | O 2 = V2 | -3 3 | =30
—1+v3 1-v3 1 1 1

4 O 5 +I 5 \/é Z 72 72 0 N4a

4 | 0 Eol 1t |- oo ]o

4c | 0 i 1 o JoJo]o
1 3 1 1

6a | 1 1+3iV3 tl o3 ]ofo
3 i A 1 4 1 1

6b 1 7_1 ﬁ—‘rE) 3 ) 0 -3 —1

12a [ —/3 IV3+7i 2 oo |-f]o
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Example Q(+/10) order 4

We have two cusp classes: ¢o = = [1:0] and ¢; = [3:1++/10]
Orders: 4 (trace 0) and 6 (trace 1).

| order | label | fixed pt | close to
4 | 4a (1vV10+3) V=4 oo
4 4p IV/—4a=i oo
4 | 4c (—\/ — —) V4 +1 oo
4 | ad \/ 7 \/ oo
4 4e T3 2 + 52\/ Cq
129 86 /10 =
4 4f | V1 _ﬁ"’( 740 +185)\/ —4 C

Here \/—4jE = 42/ with sign chosen depending on the embedding of 1/10.



Reduction algorithm

0000000000000 0e0000

Example Q(+/10) order 4

| label | X | N(x) | y [ N(y) |
4a 0 0 V10-3 —1
4b 0 0 —1 1
4c 2/10+6 —4 21046 —4
4d —2y/10+2 —36 -2 4
4e | —20y/10+26 | —3324 —26 676
af —86 7396 | —15v/10—20 | —1850
Note that if A is the cusp normalizing map of ¢; then
[ label | Az X y [ 1]
4e (—3V10— %) V-4 0 7
at | (zvi0+5)v—4 +1 | —2v/i0-2 | —2/10-2




Example Q(+/—10)
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Factoring matrices

Given elliptic element A:

Find fixed point z
Set zyp = z+€ s.t. zy € Fr (well into the interior).

o
("]
o wy=Az
@ Find pullback of wy in to Fr (make sure wg = zp).
o

Keep track of matrices used in pullback.
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Example

K=0Q(V3),z= =58 128 4 (ﬁL *Vf‘“)

wy = Azg ~ (close to 0)

wy = Swy ~ (close to a— 1)

ws = ST 3y

ws = T, — reduced

A= T't28T2715 (as a map)

A= 82T'*238T2713 (in SL2(Ok))
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