Modularity in Degree Two

Cris Poor Fordham University Lake Forest College

David S. Yuen

International Conference on Explicit Theory of Automorphic Forms Tongji University, March 2014

What are the main ideas of this talk?

- 1. There is mounting evidence for the Paramodular Conjecture.
- 2. Borcherds products are a good way to make paramodular forms.

3. Our paramodular website exists: math.lfc.edu/~yuen/paramodular

Theorem (Wiles; Wiles and Taylor; Breuil, Conrad, Diamond and Taylor) Let $N \in \mathbb{N}$. There is a bijection between

- 1. isogeny classes of elliptic curves E/\mathbb{Q} with conductor N
- 2. normalized Hecke eigenforms $f \in S_2(\Gamma_0(N))^{new}$ with rational eigenvalues.

In this correspondence we have L(E, s, Hasse) = L(f, s, Hecke).

Theorem (Wiles; Wiles and Taylor; Breuil, Conrad, Diamond and Taylor) Let $N \in \mathbb{N}$. There is a bijection between

- 1. isogeny classes of elliptic curves E/\mathbb{Q} with conductor N
- 2. normalized Hecke eigenforms $f \in S_2(\Gamma_0(N))^{new}$ with rational eigenvalues.

In this correspondence we have L(E, s, Hasse) = L(f, s, Hecke).

• Shimura proved 2 implies 1.

Theorem (Wiles; Wiles and Taylor; Breuil, Conrad, Diamond and Taylor) Let $N \in \mathbb{N}$. There is a bijection between

- 1. isogeny classes of elliptic curves E/\mathbb{Q} with conductor N
- 2. normalized Hecke eigenforms $f \in S_2(\Gamma_0(N))^{new}$ with rational eigenvalues.

In this correspondence we have L(E, s, Hasse) = L(f, s, Hecke).

- Shimura proved 2 implies 1.
- Weil added N = N.

Theorem (Wiles; Wiles and Taylor; Breuil, Conrad, Diamond and Taylor) Let $N \in \mathbb{N}$. There is a bijection between

- 1. isogeny classes of elliptic curves E/\mathbb{Q} with conductor N
- 2. normalized Hecke eigenforms $f \in S_2(\Gamma_0(N))^{new}$ with rational eigenvalues.

In this correspondence we have L(E, s, Hasse) = L(f, s, Hecke).

- Shimura proved 2 implies 1.
- Weil added N = N.
- Eichler (1954) proved the first examples $L(X_0(11), s, \text{Hasse}) = L(\eta(\tau)^2 \eta(11\tau)^2, s, \text{Hecke}).$

(*) *) *) *)

All abelian surfaces A/\mathbb{Q} are paramodular

Paramodular Conjecture (Brumer and Kramer 2009)

Let $N \in \mathbb{N}$. There is a bijection between

- 1. isogeny classes of abelian surfaces A/\mathbb{Q} with conductor N and endomorphisms $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$,
- 2. lines of Hecke eigenforms $f \in S_2(K(N))^{\text{new}}$ that have rational eigenvalues and are not Gritsenko lifts from J_{2N}^{cusp} .

In this correspondence we have

L(A, s, Hasse-Weil) = L(f, s, spin).

• The paramodular group of level N,

$$\mathcal{K}(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The paramodular group of level N,

$$\mathcal{K}(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

 K(N)\H₂ is a moduli space for complex abelian surfaces with polarization type (1, N).

(日) (同) (三) (三)

• The paramodular group of level N,

$$\mathcal{K}(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

- K(N)\H₂ is a moduli space for complex abelian surfaces with polarization type (1, N).
- K(N) is the stabilizer in $\text{Sp}_2(\mathbb{Q})$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{NZ}$.

イロト イポト イヨト イヨト 二日

• The paramodular group of level N,

$$\mathcal{K}(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

- K(N)\H₂ is a moduli space for complex abelian surfaces with polarization type (1, N).
- K(N) is the stabilizer in $\text{Sp}_2(\mathbb{Q})$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus N\mathbb{Z}$.
- New form theory for paramodular groups: Ibukiyama 1984; Roberts and Schmidt 2004, (LNM 1918).

- 4 同 6 4 日 6 4 日 6

• The paramodular group of level N,

$$\mathcal{K}(N) = egin{pmatrix} * & N* & * & * \ * & * & * & */N \ * & N* & * & * \ N* & N* & N* & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

- K(N)\H₂ is a moduli space for complex abelian surfaces with polarization type (1, N).
- K(N) is the stabilizer in $\text{Sp}_2(\mathbb{Q})$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{NZ}$.
- New form theory for paramodular groups: Ibukiyama 1984; Roberts and Schmidt 2004, (LNM 1918).
- Grit : J^{cusp}_{k,N} → S_k (K(N)), the Gritsenko lift from Jacobi cusp forms of index N to paramodular cusp forms of level N is an advanced version of the Maass lift.

More Remarks

The subtle condition for general N: $End_{\mathbb{Q}}(A) = \mathbb{Z}$.

The endomorphisms that are defined over Q are trivial: End_Q(A) = Z.
 This is the unknown case as well as the generic case in degree two.
 For elliptic curves it is always the case that End_Q(A) = Z.

< 日 > < 同 > < 回 > < 回 > < 回 > <

More Remarks

The subtle condition for general N: $End_{\mathbb{Q}}(A) = \mathbb{Z}$.

- The endomorphisms that are defined over Q are trivial: End_Q(A) = Z. This is the unknown case as well as the generic case in degree two. For elliptic curves it is always the case that End_Q(A) = Z.
- Yoshida 1980 conjectured All abelian surfaces A/Q are modular for weight two and some discrete subgroup, and gave examples for Γ₀⁽²⁾(p) where A has conductor p² and End_Q(A) is an order in a quadratic field and the Siegel modular form is a Yoshida lift.

イロト イポト イヨト イヨト 二日

More Remarks

The subtle condition for general N: $End_{\mathbb{Q}}(A) = \mathbb{Z}$.

- The endomorphisms that are defined over Q are trivial: End_Q(A) = Z. This is the unknown case as well as the generic case in degree two. For elliptic curves it is always the case that End_Q(A) = Z.
- Yoshida 1980 conjectured All abelian surfaces A/Q are modular for weight two and some discrete subgroup, and gave examples for Γ₀⁽²⁾(p) where A has conductor p² and End_Q(A) is an order in a quadratic field and the Siegel modular form is a Yoshida lift.
- Give credit to Brumer. Prior to the Paramodular Conjecture, I would have guessed that modularity in degree two would mainly involve the groups $\Gamma_0^{(2)}(N)$.

イロト 不得 トイヨト イヨト 二日

All abelian surfaces A/\mathbb{Q} are paramodular

Maybe you want to see the Paramodular Conjecture again after the remarks

Paramodular Conjecture

Let $N \in \mathbb{N}$. There is a bijection between

- 1. isogeny classes of abelian surfaces A/\mathbb{Q} with conductor N and endomorphisms $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$,
- 2. lines of Hecke eigenforms $f \in S_2(K(N))^{\text{new}}$ that have rational eigenvalues and are not Gritsenko lifts from $J_{2,N}^{\text{cusp}}$.

In this correspondence we have

$$L(A, s, \text{Hasse-Weil}) = L(f, s, \text{spin}).$$

Do the arithmetic and automorphic data match up? Looks like it.

1997: Brumer makes a (short) list of N < 1,000 that could possibly be the conductor of an abelian surface A/\mathbb{Q} .

Theorem (PY 2009)

Let p < 600 be prime. If $p \notin \{277, 349, 353, 389, 461, 523, 587\}$ then $S_2(K(p))$ consists entirely of Gritsenko lifts.

This exactly matches Brumer's "Yes" list for prime levels.

This is a lot of evidence for the Paramodular Conjecture because prime levels p < 600 that don't have abelian surfaces over \mathbb{Q} also don't have any paramodular cusp forms beyond the Gritsenko lifts.

イロト イポト イヨト イヨト 二日

Proof.

We can inject the weight two space into weight four spaces:

1) For
$$g_1, g_2 \in \operatorname{Grit}\left(J_{2,p}^{\operatorname{cusp}}\right) \subseteq S_2\left(\mathcal{K}(p)\right)$$
, we have the injection:

$$S_2(\mathcal{K}(p)) \hookrightarrow \{(H_1, H_2) \in S_4(\mathcal{K}(p)) \times S_4(\mathcal{K}(p)) : g_2H_1 = g_1H_2\}$$

$$f \mapsto (g_1f, g_2f)$$

2) The dimensions of $S_4(K(p))$ are known by Ibukiyama; we still have to span $S_4(K(p))$ by computing products of Gritsenko lifts, traces of theta series and by smearing with Hecke operators.

3) Millions of Fourier coefficients mod 109 later,

 $\dim S_2(K(p)) \le \dim\{(H_1, H_2) \in S_4(K(p)) \times S_4(K(p)) : g_2H_1 = g_1H_2\}$

Theorem (PY 2009)

We have dim $S_2(K(277)) = 11$ but dim $J_{2,277}^{\text{cusp}} = 10$. There is a Hecke eigenform $f_{277} \in S_2(K(277))$ that is not a Gritsenko lift.

 $\bullet~\mathcal{A}_{277}$ is the Jacobian of the hyperelliptic curve

$$y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$$

Theorem (PY 2009)

We have dim $S_2(K(277)) = 11$ but dim $J_{2,277}^{\text{cusp}} = 10$. There is a Hecke eigenform $f_{277} \in S_2(K(277))$ that is not a Gritsenko lift.

• \mathcal{A}_{277} is the Jacobian of the hyperelliptic curve

$$y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$$

• Magma will compute lots of Euler factors for $L(A_{277}, s, \text{H-W})$

Theorem (PY 2009)

We have dim $S_2(K(277)) = 11$ but dim $J_{2,277}^{\text{cusp}} = 10$. There is a Hecke eigenform $f_{277} \in S_2(K(277))$ that is not a Gritsenko lift.

• \mathcal{A}_{277} is the Jacobian of the hyperelliptic curve

$$y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$$

- Magma will compute lots of Euler factors for $L(A_{277}, s, H-W)$
- By contrast, we can only compute three Euler factors of $L(f_{277}, s, \text{spin})$.

Theorem (PY 2009)

We have dim $S_2(K(277)) = 11$ but dim $J_{2,277}^{\text{cusp}} = 10$. There is a Hecke eigenform $f_{277} \in S_2(K(277))$ that is not a Gritsenko lift.

• \mathcal{A}_{277} is the Jacobian of the hyperelliptic curve

$$y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$$

- Magma will compute lots of Euler factors for $L(A_{277}, s, \text{H-W})$
- By contrast, we can only compute three Euler factors of $L(f_{277}, s, \text{spin})$.
- But they agree! The 2, 3 and 5 Euler factors of L(f₂₇₇, s, spin) agree with those of L(A₂₇₇, s, H-W).

イロト イポト イヨト イヨト 二日

Theorem (PY 2009)

We have dim $S_2(K(277)) = 11$ but dim $J_{2,277}^{\text{cusp}} = 10$. There is a Hecke eigenform $f_{277} \in S_2(K(277))$ that is not a Gritsenko lift.

• \mathcal{A}_{277} is the Jacobian of the hyperelliptic curve

$$y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$$

- Magma will compute lots of Euler factors for $L(A_{277}, s, \text{H-W})$
- By contrast, we can only compute three Euler factors of $L(f_{277}, s, \text{spin})$.
- But they agree! The 2, 3 and 5 Euler factors of L(f₂₇₇, s, spin) agree with those of L(A₂₇₇, s, H-W).
- Do you want to see f_{277} ? Later, when we have theta blocks.

How can we prove a weight two nonlift cusp form exists? Method of Integral Closure

Proof.

- 1) We have a candidate $f = H_1/g_1 \in M_2^{\text{mero}}(\mathcal{K}(p))$.
- 2) Find a weight four cusp form $F \in S_4(K(p))$ and prove

$$F g_1^2 = H_1^2$$
 in $S_8(K(p))$.
Since $F = \left(\frac{H_1}{g_1}\right)^2$ is holomorphic, so is $f = \frac{H_1}{g_1}$.

How can we prove a weight two nonlift cusp form exists? Method of Integral Closure

Proof.

- 1) We have a candidate $f = H_1/g_1 \in M_2^{\text{mero}}(\mathcal{K}(p))$.
- 2) Find a weight four cusp form $F \in S_4(K(p))$ and prove

$$Fg_1^2 = H_1^2$$
 in $S_8(K(p))$.

Since
$$F = \left(\frac{H_1}{g_1}\right)^2$$
 is holomorphic, so is $f = \frac{H_1}{g_1}$

The GROAN you hear is the computer chugging away in weight 8.

More nonlifts?

- \bullet What about $349^+, 353^+, 389^+, 461^+, 523^+, 587^+, 587^-$?
- The method of integral closure has only been used to prove existence of a nonlift for $f_{277} \in S_2(K(277))^+$ where dim $S_8(K(277)) = 2529$.
- Spanning more weight eight spaces was too expensive for us.
- We told our troubles to V. Gritsenko and he suggested 587⁻ might give a Borcherds Products. And that is what the rest of this talk is about.

イロト イポト イヨト イヨト 二日

More nonlifts?

- \bullet What about $349^+, 353^+, 389^+, 461^+, 523^+, 587^+, 587^-$?
- The method of integral closure has only been used to prove existence of a nonlift for $f_{277} \in S_2(K(277))^+$ where dim $S_8(K(277)) = 2529$.
- Spanning more weight eight spaces was too expensive for us.
- We told our troubles to V. Gritsenko and he suggested 587⁻ might give a Borcherds Products. And that is what the rest of this talk is about.

But first, report on recent evidence from other sources.

イロト イポト イヨト イヨト 二日

Central L-values

Paramodular Boecherer Conjecture (Ryan and Tornaria 2011)

Let p be prime and k be even. Let $f \in S_k(K(p))$ be a cuspidal Hecke eigenform with Fourier expansion

$$f(Z) = \sum_{T>0} a(T; f)e(tr(ZT)).$$

There exists a constant c_f such that for every fund. disc. D < 0,

$$\rho_o L(f, \frac{1}{2}, \chi_D) |D|^{k-1} = c_f \ (\sum_{[T] \text{ disc. } D} \frac{1}{\epsilon(T)} a(T; f) \)^2,$$

where $\epsilon(T) = |\operatorname{Aut}_{\Gamma_0(p)}(T)|$ and $\rho_o = 1$ or 2 as (p, D) = 1 or p|D.

Central L-values

Paramodular Boecherer Conjecture (Ryan and Tornaria 2011)

Let p be prime and k be even. Let $f \in S_k(K(p))$ be a cuspidal Hecke eigenform with Fourier expansion

$$f(Z) = \sum_{T>0} a(T; f)e(tr(ZT)).$$

There exists a constant c_f such that for every fund. disc. D < 0,

$$\rho_o L(f, \frac{1}{2}, \chi_D) |D|^{k-1} = c_f \left(\sum_{[T] \text{ disc. } D} \frac{1}{\epsilon(T)} a(T; f) \right)^2,$$

where $\epsilon(T) = |\operatorname{Aut}_{\Gamma_0(p)}(T)|$ and $\rho_o = 1$ or 2 as (p, D) = 1 or p|D.

• Proven for Gritsenko lifts.

Cris Poor and David Yuen

Modularity in Degree Two

Central L-values

Paramodular Boecherer Conjecture (Ryan and Tornaria 2011)

Let p be prime and k be even. Let $f \in S_k(K(p))$ be a cuspidal Hecke eigenform with Fourier expansion

$$f(Z) = \sum_{T>0} a(T; f)e(tr(ZT)).$$

There exists a constant c_f such that for every fund. disc. D < 0,

$$ho_o L(f, \frac{1}{2}, \chi_D) |D|^{k-1} = c_f \ (\sum_{[T] \text{ disc. } D} \frac{1}{\epsilon(T)} a(T; f))^2,$$

where $\epsilon(T) = |\operatorname{Aut}_{\Gamma_0(p)}(T)|$ and $\rho_o = 1$ or 2 as (p, D) = 1 or p|D.

- Proven for Gritsenko lifts.
- Tested using Brumer's curves and our Fourier coefficients.

Cris Poor and David Yuen

Modularity in Degree Two

Equality of *L*-series Complete Examples

Theorem Report (Johnson-Leung and Roberts 2012)

Let $K = \mathbb{Q}(\sqrt{d})$ be a real quadratic field. Given a weight (k, k) Hilbert modular form h, with a linearly independent conjugate, they figured out how to lift h to a paramodular Hecke eigenform of level Norm $(\mathbf{n})d^2$ with corresponding eigenvalues.

- Let E/K be an elliptic curve not isogenous to its conjugate.
- Let A/Q be the abelian surface given by the Weil restriction of E.
 Defining property: A(Q) corresponds to E(K)
- Assume we know that E/K is modular w.r.t. a Hilbert form h.
- Then A/\mathbb{Q} is modular w.r.t. the Johnson-Leung Roberts lift of *h*.
- Dembélé and Kumar have a preprint about this.

Equality of *L*-series Complete Examples

Theorem Report (Johnson-Leung and Roberts 2012)

Let $K = \mathbb{Q}(\sqrt{d})$ be a real quadratic field. Given a weight (k, k) Hilbert modular form h, with a linearly independent conjugate, they figured out how to lift h to a paramodular Hecke eigenform of level Norm $(\mathbf{n})d^2$ with corresponding eigenvalues.

- Let E/K be an elliptic curve not isogenous to its conjugate.
- Let A/Q be the abelian surface given by the Weil restriction of E.
 Defining property: A(Q) corresponds to E(K)
- Assume we know that E/K is modular w.r.t. a Hilbert form h.
- Then A/\mathbb{Q} is modular w.r.t. the Johnson-Leung Roberts lift of h.
- Dembélé and Kumar have a preprint about this.
- For a similar but different example: Berger, Dembélé, Pacetti, Sengun for N = 223² and K imaginary quadratic.

Definition of Siegel Modular Form

- Siegel Upper Half Space: $\mathcal{H}_n = \{Z \in M^{sym}_{n \times n}(\mathbb{C}) : \text{Im } Z > 0\}.$
- Symplectic group: $\sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{R})$ acts on $Z \in \mathcal{H}_n$ by $\sigma \cdot Z = (AZ + B)(CZ + D)^{-1}$.
- $\Gamma \subseteq Sp_n(\mathbb{R})$ such that $\Gamma \cap Sp_n(\mathbb{Z})$ has finite index in Γ and $Sp_n(\mathbb{Z})$
- Siegel Modular Form: M_k(Γ) = { holomorphic f : H_n → C that transforms by det(CZ + D)^k and are "bounded at the cusps" }
- Cusp Form: $S_k(\Gamma) = \{ f \in M_k(\Gamma) \text{ that "vanish at the cusps"} \}$
- Fourier Expansion: $f(Z) = \sum_{T \ge 0} a(T; f)e(tr(ZT))$

•
$$n = 2; \Gamma = \mathcal{K}(N); T \in \begin{pmatrix} \mathbb{Z} & \frac{1}{2}\mathbb{Z} \\ \frac{1}{2}\mathbb{Z} & N\mathbb{Z} \end{pmatrix}$$

イロト イポト イヨト イヨト 二日

Examples of Siegel Modular Forms

• Thetanullwerte:
$$heta \begin{bmatrix} a \\ b \end{bmatrix} (0, Z) \in M_{1/2} \left(\Gamma^{(n)}(8) \right)$$
 for $a, b \in \frac{1}{2} \mathbb{Z}^n$

• Riemann Theta Function:

$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (z, Z) = \sum_{m \in \mathbb{Z}^n} e\left(\frac{1}{2}(m+a)' Z(m+a) + (m+a)'(z+b) \right)$$

•
$$X_{10} = \prod_{a,b}^{10} \theta \begin{bmatrix} a \\ b \end{bmatrix} (0,Z)^2 \in S_{10}(\operatorname{Sp}_2(\mathbb{Z}))$$
 $(4a \cdot b \equiv 0 \mod 4)$
 $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1/2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1/2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1/2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 & 0 \\ 1/2 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 & 0 \\ 1/2 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 & 0 \\ 1/2 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 0 \end{bmatrix}, \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$

<ロ> <同> <同> < 同> < 同>

.

Jacobi Forms

Definition of Jacobi Forms: Automorphicity Level one

• Assume $\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C}$ is holomorphic.

$$\begin{split} \tilde{\phi} &: \mathcal{H}_2 \to \mathbb{C} \\ \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} \mapsto \phi(\tau, z) e(m\omega) \end{split}$$

• Assume that $\tilde{\phi}$ transforms by $\chi \det(CZ + D)^k$ for

$$P_{2,1}(\mathbb{Z}) = \begin{pmatrix} * & 0 & * & * \\ * & * & * & * \\ * & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Z}), \quad * \in \mathbb{Z},$$

Jacobi Forms

Definition of Jacobi Forms: Automorphicity Level one

• Assume $\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C}$ is holomorphic.

$$\begin{split} \tilde{\phi} &: \mathcal{H}_2 \to \mathbb{C} \\ \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} \mapsto \phi(\tau, z) e(m\omega) \end{split}$$

• Assume that $\tilde{\phi}$ transforms by $\chi \det(CZ + D)^k$ for

$$P_{2,1}(\mathbb{Z}) = egin{pmatrix} * & 0 & * & * \ * & * & * & * \ * & 0 & * & * \ 0 & 0 & 0 & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Z}), \quad * \in \mathbb{Z},$$

• $P_{2,1}(\mathbb{Z})/\{\pm I\} \cong SL_2(\mathbb{Z}) \ltimes Heisenberg(\mathbb{Z})$

Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

• $\phi \in J_{k,m}^{\text{cusp}}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 > 0$

Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

• $\phi \in J_{k,m}^{\text{cusp}}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 > 0$ • $\phi \in J_{k,m}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 \ge 0$

Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

- $\phi \in J_{k,m}^{\text{cusp}}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn r^2 > 0$
- $\phi \in J_{k,m}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn r^2 \geq 0$
- $\phi \in J_{k,m}^{ ext{weak}}$: automorphicity and $c(n,r;\phi)
 eq 0 \implies n \geq 0$

イロト 不得 トイヨト イヨト 二日

Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

- $\phi \in J_{k,m}^{\text{cusp}}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn r^2 > 0$
- $\phi \in J_{k,m}$: automorphicity and $c(n,r;\phi) \neq 0 \implies 4mn r^2 \geq 0$
- $\phi \in J_{k,m}^{ ext{weak}}$: automorphicity and $c(n,r;\phi) \neq 0 \implies n \geq 0$
- $\phi \in J_{k,m}^{\text{wh}}$: automorphicity and $c(n, r; \phi) \neq 0 \implies n \gg -\infty$ ("wh" stands for *weakly holomorphic*)

イロト 不得 とうせい かほとう ほ

Examples of Jacobi Forms

• Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$

$$\eta(\tau) = \sum_{n \in \mathbb{Z}} \left(\frac{12}{n}\right) q^{n^2/24} = q^{1/24} \prod_{n \in \mathbb{N}} (1-q^n)$$

• Odd Jacobi Theta function $artheta \in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_H)$

$$egin{aligned} artheta(au,z) &= \sum_{n\in\mathbb{Z}} \left(rac{-4}{n}
ight) q^{n^2/8} \zeta^{n/2} \ &= q^{1/8} \left(\zeta^{1/2}-\zeta^{-1/2}
ight) \prod_{n\in\mathbb{N}} (1-q^n)(1-q^n\zeta)(1-q^n\zeta^{-1}) \end{aligned}$$

Cris Poor and David Yuen

イロト 不得 トイヨト イヨト 二日

Examples of Jacobi Forms

• Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$

$$\eta(\tau) = \sum_{n \in \mathbb{Z}} \left(\frac{12}{n}\right) q^{n^2/24} = q^{1/24} \prod_{n \in \mathbb{N}} (1-q^n)$$

• Odd Jacobi Theta function $artheta \in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_H)$

$$egin{aligned} artheta(au,z) &= \sum_{n\in\mathbb{Z}} \left(rac{-4}{n}
ight) q^{n^2/8} \zeta^{n/2} \ &= q^{1/8} \left(\zeta^{1/2} - \zeta^{-1/2}
ight) \prod_{n\in\mathbb{N}} (1-q^n)(1-q^n\zeta)(1-q^n\zeta^{-1}) \end{aligned}$$

• $\vartheta_{\ell} \in J_{1/2,\ell^2/2}^{\operatorname{cusp}}(\epsilon^3 v_{H}^{\ell}), \quad \vartheta_{\ell}(\tau,z) = \vartheta(\tau,\ell z)$

Cris Poor and David Yuen

Shanghai 19 / 47

イロト 不得 とうせい かほとう ほ

Theta Blocks

A theory due to Gritsenko, Skoruppa and Zagier.

Definition

A theta block is a function
$$\eta^{c(0)} \prod_{\ell} \left(\frac{\vartheta_{\ell}}{\eta}\right)^{c(\ell)} \in J_{k,m}^{\text{mero}}$$
 for a sequence $c : \mathbb{N} \cup \{0\} \to \mathbb{Z}$ with finite support.

• There is a famous Jacobi form of weight two and index 37:

$$f_{37} = \frac{\vartheta_1^3 \vartheta_2^3 \vartheta_3^2 \vartheta_4 \vartheta_5}{\eta^6} = \mathsf{TB}_2[1, 1, 1, 2, 2, 2, 3, 3, 4, 5]$$

< □ > < 同 >

A B F A B F

Theta Blocks

A theory due to Gritsenko, Skoruppa and Zagier.

Definition

A theta block is a function
$$\eta^{c(0)} \prod_{\ell} \left(\frac{\vartheta_{\ell}}{\eta}\right)^{c(\ell)} \in J_{k,m}^{\text{mero}}$$
 for a sequence $c : \mathbb{N} \cup \{0\} \to \mathbb{Z}$ with finite support.

• There is a famous Jacobi form of weight two and index 37:

$$f_{37} = \frac{\vartheta_1^3 \vartheta_2^3 \vartheta_3^3 \vartheta_4 \vartheta_5}{\eta^6} = \mathsf{TB}_2[1, 1, 1, 2, 2, 2, 3, 3, 4, 5]$$

• $\prod_{\ell \in [1,1,1,2,2,2,3,3,4,5]} \left(\zeta^{\ell/2} - \zeta^{-\ell/2} \right)$, the *baby* theta block.

< 日 > < 同 > < 三 > < 三 >

Theta Blocks

A theory due to Gritsenko, Skoruppa and Zagier.

Definition

A theta block is a function
$$\eta^{c(0)} \prod_{\ell} \left(\frac{\vartheta_{\ell}}{\eta} \right)^{c(\ell)} \in J_{k,m}^{\text{mero}}$$
 for a sequence $c : \mathbb{N} \cup \{0\} \to \mathbb{Z}$ with finite support.

• There is a famous Jacobi form of weight two and index 37:

$$f_{37} = \frac{\vartheta_1^3 \vartheta_2^3 \vartheta_3^2 \vartheta_4 \vartheta_5}{\eta^6} = \mathsf{TB}_2[1, 1, 1, 2, 2, 2, 3, 3, 4, 5].$$

- $\prod_{\ell \in [1,1,1,2,2,2,3,3,4,5]} \left(\zeta^{\ell/2} \zeta^{-\ell/2} \right)$, the *baby* theta block.
- Given a theta block, it is easy to calculate the weight, index, character, divisor and valuation.

Shanghai 20 / 47

Skoruppa's Valuation

Definition

For
$$\phi \in J_{k,m}^{\mathrm{wh}}$$
, $x \in \mathbb{R}$, define $\operatorname{ord}(\phi; x) = \min_{(n,r) \in \operatorname{supp}(\phi)}(mx^2 + rx + n)$

ord : $J_{k,m}^{\mathrm{wh}} \rightarrow$ Continuous piecewise quadratic functions of period one

Theorem (Gritsenko, Skoruppa, Zagier) Let $\phi \in J_{k,m}^{\text{wh}}$. Then $\phi \in J_{k,m} \iff \operatorname{ord}(\phi; x) \ge 0$ and $\phi \in J_{k,m}^{\text{cusp}} \iff \operatorname{ord}(\phi; x) > 0$.

Skoruppa's Valuation

Definition

For
$$\phi \in J_{k,m}^{\mathrm{wh}}$$
, $x \in \mathbb{R}$, define $\operatorname{ord}(\phi; x) = \min_{(n,r) \in \operatorname{supp}(\phi)}(mx^2 + rx + n)$

ord : $J_{k,m}^{\mathrm{wh}} \rightarrow$ Continuous piecewise quadratic functions of period one

Theorem (Gritsenko, Skoruppa, Zagier) Let $\phi \in J_{k,m}^{\text{wh}}$. Then $\phi \in J_{k,m} \iff \operatorname{ord}(\phi; x) \ge 0$ and $\phi \in J_{k,m}^{\text{cusp}} \iff \operatorname{ord}(\phi; x) > 0$.

•
$$B_2(x) = x^2 - x - \frac{1}{6}$$
 and $\bar{B}(x) = B(x - \lfloor x \rfloor)$

• A lovely formula:

ord
$$(\mathsf{TB}_k[d_1, d_2, \dots, d_\ell]); x) = \frac{k}{12} + \frac{1}{2} \sum_i \bar{B}_2(d_i x)$$

▶ ≣ •୨৭. ghai 22 / 47

Cris Poor and David Yuen

Modularity in Degree Two

Shanghai

23 / 47

æ

• A
$$\frac{10\vartheta}{6\eta}$$
 theta block has weight $10(\frac{1}{2}) - 6(\frac{1}{2}) = 2$.

<ロ> <同> <同> < 同> < 同>

<ロ> (日) (日) (日) (日) (日)

<ロ> (日) (日) (日) (日) (日)

• A
$$\frac{10\vartheta}{6\eta}$$
 theta block has weight $10(\frac{1}{2}) - 6(\frac{1}{2}) = 2$.

- A $\frac{10\vartheta}{6\eta}$ theta block has leading *q*-power $10(\frac{1}{8}) 6(\frac{1}{24}) = 1$.
- A $\frac{10\vartheta}{6\eta}$ theta block has index $m = \frac{1}{2}(d_1^2 + d_2^2 + \dots + d_{10}^2)$.
- Are there any other ways to get weight two?

• A
$$\frac{10\vartheta}{6\eta}$$
 theta block has weight $10(\frac{1}{2}) - 6(\frac{1}{2}) = 2$.

- A $\frac{10\vartheta}{6\eta}$ theta block has leading *q*-power $10(\frac{1}{8}) 6(\frac{1}{24}) = 1$.
- A $\frac{10\vartheta}{6\eta}$ theta block has index $m = \frac{1}{2}(d_1^2 + d_2^2 + \dots + d_{10}^2)$.
- Are there any other ways to get weight two?

• A
$$\frac{22\vartheta}{18\eta}$$
 theta block has weight $22(\frac{1}{2}) - 18(\frac{1}{2}) = 2$.

• A $\frac{22\vartheta}{18\eta}$ theta block has leading *q*-power $22(\frac{1}{8}) - 18(\frac{1}{24}) = 2$.

• A $\frac{22\vartheta}{18\eta}$ theta block has index $m = \frac{1}{2}(d_1^2 + d_2^2 + \cdots + d_{22}^2)$.

イロト 不得 トイヨト イヨト 二日

25 / 47

Index Raising Operators $V(\ell): J_{k,m} \to J_{k,m\ell}$

Elliptic Hecke Algebra
$$\longrightarrow$$
 Jacobi Hecke Algebra

$$\sum \operatorname{SL}_2(\mathbb{Z}) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \sum P_{2,1}(\mathbb{Z}) \begin{pmatrix} a & 0 & b & 0 \\ 0 & ad - bc & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\sum_{\substack{ad=\ell \\ b \mod d}} \operatorname{SL}_2(\mathbb{Z}) \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \sum_{\substack{ad=\ell \\ b \mod d}} P_{2,1}(\mathbb{Z}) \begin{pmatrix} a & 0 & b & 0 \\ 0 & \ell & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T(\ell) \mapsto V(\ell)$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gritsenko Lift

Definition

For $\phi \in J_{k,m}^{\mathrm{wh}}$, define a series by

$$\operatorname{Grit}(\phi)\begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} = \sum_{\ell \in \mathbb{N}} \ell^{2-k}(\phi | V(\ell))(\tau, z) e(\ell m \omega).$$

Theorem (Gritsenko)

For $\phi \in J_{k,m}^{\mathrm{cusp}}$ the series $\mathsf{Grit}(\phi)$ converges and defines a map

$${\operatorname{\mathsf{Grit}}}: J_{k,m}^{\operatorname{cusp}} o S_k \left({\mathcal K}(m)
ight)^\epsilon, \quad \epsilon = (-1)^k.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Gritsenko Lift

Definition

For $\phi \in J_{k,m}^{\mathrm{wh}}$, define a series by

$$\operatorname{Grit}(\phi)\begin{pmatrix} \tau & z\\ z & \omega \end{pmatrix} = \sum_{\ell \in \mathbb{N}} \ell^{2-k}(\phi | V(\ell))(\tau, z) e(\ell m \omega).$$

Theorem (Gritsenko)

For $\phi \in J_{k,m}^{\mathrm{cusp}}$ the series $\mathsf{Grit}(\phi)$ converges and defines a map

$$\mathsf{Grit}: J^{\mathrm{cusp}}_{k,m} o S_k \left(\mathsf{K}(m)
ight)^\epsilon, \quad \epsilon = (-1)^k.$$

• Example: Grit
$$\left(\eta^{18} artheta^2
ight) = X_{10} \in \mathcal{S}_{10}(\mathcal{K}(1))$$

Cris Poor and David Yuen

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

There are 10 dimensions of Gritsenko lifts in $S_2(K(277))$

We have dim $S_2(K(277)) = 11$ whereas the dimension of Gritsenko lifts in $S_2(K(277))$ is dim $J_{2,277}^{\text{cusp}} = 10$.

Let $G_i = \text{Grit}(\text{TB}_2(\Sigma_i))$ for $1 \le i \le 10$ be the lifts of the 10 theta blocks given by:

 $\Sigma_i \in \{ [2, 4, 4, 4, 5, 6, 8, 9, 10, 14], [2, 3, 4, 5, 5, 7, 7, 9, 10, 14], \}$ [2, 3, 4, 4, 5, 7, 8, 9, 11, 13], [2, 3, 3, 5, 6, 6, 8, 9, 11, 13],[2, 3, 3, 5, 5, 8, 8, 8, 11, 13], [2, 3, 3, 5, 5, 7, 8, 10, 10, 13],[2, 3, 3, 4, 5, 6, 7, 9, 10, 15], [2, 2, 4, 5, 6, 7, 7, 9, 11, 13], $[2, 2, 4, 4, 6, 7, 8, 10, 11, 12], [2, 2, 3, 5, 6, 7, 9, 9, 11, 12] \}.$

イロト 不得 トイヨト イヨト 二日

The nonlift paramodular eigenform $f_{277} \in S_2(K(277))$

$$f_{277} = \frac{Q}{L}$$

 $Q = -14G_1^2 - 20G_8G_2 + 11G_9G_2 + 6G_2^2 - 30G_7G_{10} + 15G_9G_{10} + 15G_{10}G_1$ $-30G_{10}G_2 - 30G_{10}G_3 + 5G_4G_5 + 6G_4G_6 + 17G_4G_7 - 3G_4G_8 - 5G_4G_9$ $-5G_5G_6 + 20G_5G_7 - 5G_5G_8 - 10G_5G_9 - 3G_6^2 + 13G_6G_7 + 3G_6G_8$ $-10G_{6}G_{9} - 22G_{7}^{2} + G_{7}G_{8} + 15G_{7}G_{9} + 6G_{8}^{2} - 4G_{8}G_{9} - 2G_{9}^{2} + 20G_{1}G_{2}$ $-28G_3G_2+23G_4G_2+7G_6G_2-31G_7G_2+15G_5G_2+45G_1G_3-10G_1G_5$ $-2G_{1}G_{4} - 13G_{1}G_{6} - 7G_{1}G_{8} + 39G_{1}G_{7} - 16G_{1}G_{9} - 34G_{3}^{2} + 8G_{3}G_{4}$ $+20G_3G_5+22G_3G_6+10G_3G_8+21G_3G_9-56G_3G_7-3G_4^2$ $L = -G_4 + G_6 + 2G_7 + G_8 - G_9 + 2G_3 - 3G_2 - G_1.$

イロト 不得 とくほ とくほ とうしょう

Euler factors for $f_{277} \in S_2(K(277))$

$$L(f, s, spin) = (1 + 2x + 4x^{2} + 4x^{3} + 4x^{4})$$
$$(1 + x + x^{2} + 3x^{3} + 9x^{4})$$
$$(1 + x - 2x^{2} + 5x^{3} + 25x^{4})$$

. . .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Euler factors for $f_{277} \in S_2(K(277))$

$$L(f, s, spin) = (1 + 2x + 4x^{2} + 4x^{3} + 4x^{4})$$
$$(1 + x + x^{2} + 3x^{3} + 9x^{4})$$
$$(1 + x - 2x^{2} + 5x^{3} + 25x^{4})$$

• These match the 2, 3 and 5 Euler factors for $L(A_{277}, s, \text{H-W})$ • A_{277} = Jacobian of $y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$

. . .

イロト イポト イヨト ・ヨ

Euler factors for $f_{277} \in S_2(K(277))$

$$L(f, s, spin) = (1 + 2x + 4x^{2} + 4x^{3} + 4x^{4})$$
$$(1 + x + x^{2} + 3x^{3} + 9x^{4})$$
$$(1 + x - 2x^{2} + 5x^{3} + 25x^{4})$$

- These match the 2, 3 and 5 Euler factors for $L(A_{277}, s, \text{H-W})$
- A_{277} = Jacobian of $y^2 + y = x^5 + 5x^4 + 8x^3 + 6x^2 + 2x$

. . .

• A spin *L*-function not of GL(2) type.

イロト イポト イヨト イヨト 二日

Joint work with V. Gritsenko

 $S_2(K(587))^- = \mathbb{C}B$ is spanned by a Borcherds product B.

(A minus form in weight two cannot be a lift.)

Why did Gritsenko suspect that the first minus form might be a Borcherds product?

$$11 = \min\{p : S_{2}(\Gamma_{0}(p)) \neq \{0\}\}, \qquad S_{2}(\Gamma_{0}(11)) = \mathbb{C} \eta(\tau)^{2} \eta(11\tau)^{2}$$

$$37 = \min\{p : J_{2,p}^{cusp} \neq \{0\}\}, \qquad J_{2,37}^{cusp} = \mathbb{C} \eta^{-6} \vartheta_{1}^{3} \vartheta_{2}^{3} \vartheta_{3}^{2} \vartheta_{4} \vartheta_{5}$$

$$587 = \min\{p : S_{2}(K(p))^{-} \neq \{0\}\}, \qquad S_{2}(K(587))^{-} = \mathbb{C} \text{ Borch}(\psi)$$

$$\psi \in J_{0,587}^{wh}(\mathbb{Z})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• Let's come to grips with Borcherds products.

< ロ > < 同 > < 回 > < 回 >

Theorem (Borcherds, Gritsenko, Nikulin)

Let $N, N_o \in \mathbb{N}$. Let $\Psi \in J_{0,N}^{\mathrm{wh}}$ be a weakly holomorphic Jacobi form with Fourier expansion

$$\Psi(\tau,z) = \sum_{n,r\in\mathbb{Z}:\,n\geq -N_o} c(n,r) q^n \zeta^r$$

and $c(n,r) \in \mathbb{Z}$ for $4Nn - r^2 \le 0$. Then we have $c(n,r) \in \mathbb{Z}$ for all $n,r \in \mathbb{Z}$. We set

$$24A = \sum_{\ell \in \mathbb{Z}} c(0,\ell); \quad 2B = \sum_{\ell \in \mathbb{N}} \ell c(0,\ell); \quad 4C = \sum_{\ell \in \mathbb{Z}} \ell^2 c(0,\ell);$$
$$D_0 = \sum_{n \in \mathbb{Z}: n < 0} \sigma_0(-n) c(n,0); \quad k = \frac{1}{2} c(0,0); \quad \chi = (\epsilon^{24A} \times v_H^{2B}) \chi_F^{k+D_0}.$$

There is a function $\mathsf{Borch}(\Psi) \in M_k^{\mathrm{mero}}(\mathcal{K}(N)^+, \chi)$ whose divisor in

Cris Poor and David Yuen

in $K(N)^+ \setminus \mathcal{H}_2$ consists of Humbert surfaces $\operatorname{Hum}(T_o)$ for $T_o = \begin{pmatrix} n_o & r_o/2 \\ r_o/2 & Nm_o \end{pmatrix}$ with $\operatorname{gcd}(n_o, r_o, m_o) = 1$ and $m_o \ge 0$. The multiplicity of $\operatorname{Borch}(\Psi)$ on $\operatorname{Hum}(T_o)$ is $\sum_{n \in \mathbb{N}} c(n^2 n_o m_o, nr_o)$. In particular, if $c(n, r) \ge 0$ when $4Nn - r^2 \le 0$ then $\operatorname{Borch}(\Psi) \in M_k(K(N)^+, \chi)$ is holomorphic. In particular,

$$\mathsf{Borch}(\Psi)(\mu_N\langle Z
angle)=(-1)^{k+D_0}\,\mathsf{Borch}(\Psi)(Z),\,\,\mathsf{for}\,\,Z\in\mathcal{H}_2.$$

For sufficiently large λ , for $Z = \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} \in \mathcal{H}_2$ and $q = e(\tau)$, $\zeta = e(z)$, $\xi = e(\omega)$, the following product converges on $\{Z \in \mathcal{H}_2 : \text{Im } Z > \lambda I_2\}$:

$$\operatorname{Borch}(\Psi)(Z) = q^{A} \zeta^{B} \xi^{C} \prod_{\substack{n,r,m \in \mathbb{Z}: m \ge 0, \text{ if } m = 0 \text{ then } n \ge 0 \\ \text{and if } m = n = 0 \text{ then } r < 0.}} \left(1 - q^{n} \zeta^{r} \xi^{Nm} \right)^{c(nm,r)}$$

イロト イポト イヨト ・ヨ

1

and is on $\{\Omega \in \mathcal{H}_2 : \operatorname{Im} \Omega > \lambda I_2\}$ a rearrangement of

$$\mathsf{Borch}(\Psi) = \left(\eta^{c(0,0)} \prod_{\ell \in \mathbb{N}} \left(\frac{\tilde{\vartheta}_{\ell}}{\eta}\right)^{c(0,\ell)}\right) \exp\left(-\mathsf{Grit}(\Psi)\right).$$

<ロ> <同> <同> < 同> < 同>

Borcherds Product Summary

Theorem

So, somehow, if you have a weakly holomorphic weight zero, index N Jacobi form with integral coefficients

$$\Psi(\tau,z) = \sum_{n,r\in\mathbb{Z}: n\geq -N_o} c(n,r) q^n \zeta^r$$

and the "singular coefficients" c(n,r) with $4Nn - r^2 < 0$ are for the most part positive, then

$$\mathsf{Borch}(\Psi)(Z) = q^A \zeta^B \xi^C \prod_{n,m,r} \left(1 - q^n \zeta^r \xi^{Nm} \right)^{c(nm,r)}$$

converges in a neighborhood of infinity and analytically continues to an element of $M_{k'}(K(N))$, for some new weight k'.

Cris Poor and David Yuen

Shanghai 37 / 47

Borcherds Product Example

•
$$\phi_{10} = \eta^{18} \vartheta_1^2 \in J_{10,1}^{\text{cusp}}$$

<ロ> (日) (日) (日) (日) (日)

Borcherds Product Example

•
$$\phi_{10} = \eta^{18} \vartheta_1^2 \in J_{10,1}^{\text{cusp}}$$

۲

$$\psi = -\frac{\phi_{10}|V(2)}{\phi_{10}} = \sum_{n,r\in\mathbb{Z}: n\geq 1} c(n,r;\psi) q^n \zeta^r \in J_{0,1}^{\text{weak}}$$
$$= 20 + 2\zeta + 2\zeta^{-1} + \dots$$

<ロ> (日) (日) (日) (日) (日)

Borcherds Product Example

•
$$\phi_{10} = \eta^{18} \vartheta_1^2 \in J_{10,1}^{\text{cusp}}$$

۲

۲

$$\psi = -\frac{\phi_{10}|V(2)}{\phi_{10}} = \sum_{n,r\in\mathbb{Z}:\,n\geq 1} c(n,r;\psi) q^n \zeta^r \in J_{0,1}^{\text{weak}}$$
$$= 20 + 2\zeta + 2\zeta^{-1} + \dots$$

$$X_{10} = \operatorname{Borch}(\psi)(Z) = q\zeta\xi \prod_{n,m,r} (1 - q^n \zeta^r \xi^m)^{c(nm,r;\psi)}$$

<ロ> (日) (日) (日) (日) (日)

Borcherds Product Example

•
$$\phi_{10} = \eta^{18} \vartheta_1^2 \in J_{10,1}^{\text{cusp}}$$

۰

۲

$$\psi = -\frac{\phi_{10}|V(2)}{\phi_{10}} = \sum_{n,r\in\mathbb{Z}: n\ge 1} c(n,r;\psi) q^n \zeta^r \in J_{0,1}^{\text{weak}}$$
$$= 20 + 2\zeta + 2\zeta^{-1} + \dots$$

$$X_{10} = \operatorname{Borch}(\psi)(Z) = q\zeta\xi \prod_{n,m,r} (1 - q^n \zeta^r \xi^m)^{c(nm,r;\psi)}$$

 $\mathsf{Div}\left(\mathsf{Borch}(\psi)\right) = 2\operatorname{\mathsf{Hum}}\left(\begin{smallmatrix}0&1/2\\1/2&0\end{smallmatrix}
ight) = 2\operatorname{\mathsf{Sp}}_2(\mathbb{Z})(\mathcal{H}_1 \times \mathcal{H}_1)$

• The reducible locus: $\mathsf{Sp}_2(\mathbb{Z})(\mathcal{H}_1 imes \mathcal{H}_1) \subseteq \mathsf{Sp}_2(\mathbb{Z}) ackslash \mathcal{H}_2$

A nonlift Borcherds Product in $S_2(K(587))^-$

- Want: antisymmetric B-product $f \in S_2(K(p))^-$, here p = 587.
- Fourier Jacobi expansion: $f = \phi_p \xi^p + \phi_{2p} \xi^{2p} + \dots$
- ϕ_p is a theta block because f is a B-prod.
- $\phi_p \sim q^2$ because f is antisymmetric

イロト イポト イヨト イヨト 二日

A nonlift Borcherds Product in $S_2(K(587))^-$

- Want: antisymmetric B-product $f \in S_2(K(p))^-$, here p = 587.
- Fourier Jacobi expansion: $f = \phi_p \xi^p + \phi_{2p} \xi^{2p} + \dots$
- ϕ_p is a theta block because f is a B-prod.
- $\phi_p \sim q^2$ because f is antisymmetric
- The only element of $J_{2,587}^{\text{cusp}}$ that vanishes to order two is:

$$\begin{array}{l} \mathsf{TB}_2 \fbox{2} = \\ \mathsf{TB}_2 [1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14] \end{array}$$

イロト イポト イヨト イヨト 二日

40 / 47

The Ansatz Maybe this will work.

Ansatz

Define a Theta Buddy $\Theta \in J_{2,2\cdot 587}^{\mathrm{cusp}}$ by

 $\phi_{2p} = \phi_p | V(2) - \Theta$

<ロ> <同> <同> < 同> < 同>

The Ansatz Maybe this will work.

Ansatz

Define a Theta Buddy $\Theta \in \textit{J}_{2,2\cdot 587}^{\mathrm{cusp}}$ by

$$\phi_{2p} = \phi_p | V(2) - \Theta$$

• By antisymmetry and the action of V(2)

$$\operatorname{coef}(q^2,\Theta) = \operatorname{coef}(q^4,\phi_p) = \prod_{\ell \in [3]} \left(\zeta^{\ell/2} - \zeta^{-\ell/2}\right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Ansatz Maybe this will work.

Ansatz

Define a Theta Buddy $\Theta \in J^{\mathrm{cusp}}_{2,2\cdot 587}$ by

$$\phi_{2p} = \phi_p | V(2) - \Theta$$

• By antisymmetry and the action of V(2)

$$\operatorname{coef}(q^2,\Theta) = \operatorname{coef}(q^4,\phi_p) = \prod_{\ell \in \boxed{3}} \left(\zeta^{\ell/2} - \zeta^{-\ell/2}\right)$$

• The leading coefficient of the Theta Buddy is a Baby Theta Block: $\Theta = TB_2[3] = TB_2[1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14]$

イロト 不得 トイヨト イヨト 二日

42 / 47

æ

i 43 / 47

• Define

$$\psi = \frac{\mathsf{TB}_2[2]|V(2) - \mathsf{TB}_2[3]}{\mathsf{TB}_2[2]} \in J_{0,587}^{\mathrm{wh}}$$
$$= 4 + \frac{1}{q} + \zeta^{-14} + \dots + q^{134}\zeta^{561} + \dots$$

Shanghai 44 / 47

Define

$$\psi = \frac{\mathsf{TB}_2[2]|V(2) - \mathsf{TB}_2[3]}{\mathsf{TB}_2[2]} \in J_{0,587}^{\mathrm{wh}}$$
$$= 4 + \frac{1}{q} + \zeta^{-14} + \dots + q^{134}\zeta^{561} + \dots$$

• Compute the singular part of ψ to order $q^{146} = q^{\lfloor p/4 \rfloor}$ and see that all singular Fourier coefficients $c(n, r; \psi) \ge 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Define

$$\psi = \frac{\mathsf{TB}_2[2]|V(2) - \mathsf{TB}_2[3]}{\mathsf{TB}_2[2]} \in J_{0,587}^{\mathrm{wh}}$$
$$= 4 + \frac{1}{q} + \zeta^{-14} + \dots + q^{134}\zeta^{561} + \dots$$

- Compute the singular part of ψ to order q¹⁴⁶ = q^{⌊p/4}⌋ and see that all singular Fourier coefficients c(n, r; ψ) ≥ 0.
- Therefore, Borch(ψ) ∈ S₂ (K(587))[−] exists and hence spans a one dimensional space.

< 日 > < 同 > < 回 > < 回 > < 回 > <

• Compute the 2 and 3-Euler factors

$$L(f, s, spin) = (1 + 3x + 9x^{2} + 6x^{3} + 4x^{4})$$
$$(1 + 4x + 9x^{2} + 12x^{3} + 9x^{4})$$

. . .

<ロ> <同> <同> < 同> < 同>

Compute the 2 and 3-Euler factors

$$L(f, s, spin) = (1 + 3x + 9x^{2} + 6x^{3} + 4x^{4})$$
$$(1 + 4x + 9x^{2} + 12x^{3} + 9x^{4})$$

- These match the 2 and 3 Euler factors for $L(\mathcal{A}^-_{587},s,\mathrm{H\text{-}W})$
- $\mathcal{A}^-_{587} =$ Jacobian of $y^2 + (x^3 + x + 1)y = -x^3 + -x^2$

. . .

イロト 不得 トイヨト イヨト 二日

Current Work

We are using Borcherds products to construct more paramodular nonlifts.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

・ロト ・部ト ・モト ・モト