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Outline

What are the main ideas of this talk?

1. There is mounting evidence for the Paramodular Conjecture.

2. Borcherds products are a good way to make paramodular forms.

3. Our paramodular website exists: math.lfc.edu/∼yuen/paramodular
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Introduction

All elliptic curves E/Q are modular

Theorem (Wiles; Wiles and Taylor; Breuil, Conrad, Diamond and Taylor)

Let N ∈ N. There is a bijection between

1. isogeny classes of elliptic curves E/Q with conductor N

2. normalized Hecke eigenforms f ∈ S2(Γ0(N))new with rational
eigenvalues.

In this correspondence we have L(E , s,Hasse) = L(f , s,Hecke).

Shimura proved 2 implies 1.

Weil added N = N.

Eichler (1954) proved the first examples
L(X0(11), s,Hasse) = L(η(τ)2η(11τ)2, s,Hecke).
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Introduction

All abelian surfaces A/Q are paramodular

Paramodular Conjecture (Brumer and Kramer 2009)

Let N ∈ N. There is a bijection between

1. isogeny classes of abelian surfaces A/Q with conductor N and
endomorphisms EndQ(A) = Z,

2. lines of Hecke eigenforms f ∈ S2(K (N))new that have rational
eigenvalues and are not Gritsenko lifts from Jcusp2,N .

In this correspondence we have

L(A, s,Hasse-Weil) = L(f , s, spin).
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Introduction

Remarks

The paramodular group of level N,

K (N) =


∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

 ∩ Sp2(Q), ∗ ∈ Z,

K (N)\H2 is a moduli space for complex abelian surfaces with
polarization type (1,N).

K (N) is the stabilizer in Sp2(Q) of Z⊕ Z⊕ Z⊕ NZ.

New form theory for paramodular groups:
Ibukiyama 1984; Roberts and Schmidt 2004, (LNM 1918).

Grit : Jcuspk,N → Sk (K (N)), the Gritsenko lift from Jacobi cusp forms of
index N to paramodular cusp forms of level N is an advanced version
of the Maass lift.
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Introduction

More Remarks
The subtle condition for general N: EndQ(A) = Z.

The endomorphisms that are defined over Q are trivial: EndQ(A) = Z.
This is the unknown case as well as the generic case in degree two.
For elliptic curves it is always the case that EndQ(A) = Z.

Yoshida 1980 conjectured All abelian surfaces A/Q are modular for
weight two and some discrete subgroup, and gave examples for

Γ
(2)
0 (p) where A has conductor p2 and EndQ(A) is an order in a

quadratic field and the Siegel modular form is a Yoshida lift.

Give credit to Brumer. Prior to the Paramodular Conjecture, I would
have guessed that modularity in degree two would mainly involve the

groups Γ
(2)
0 (N).
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Introduction

All abelian surfaces A/Q are paramodular
Maybe you want to see the Paramodular Conjecture again after the remarks

Paramodular Conjecture

Let N ∈ N. There is a bijection between

1. isogeny classes of abelian surfaces A/Q with conductor N and
endomorphisms EndQ(A) = Z,

2. lines of Hecke eigenforms f ∈ S2(K (N))new that have rational
eigenvalues and are not Gritsenko lifts from Jcusp2,N .

In this correspondence we have

L(A, s,Hasse-Weil) = L(f , s, spin).
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Evidence for the Paramodular Conjecture Background evidence

Do the arithmetic and automorphic data match up?
Looks like it.

1997: Brumer makes a (short) list of N < 1, 000 that could possibly be
the conductor of an abelian surface A/Q.

Theorem (PY 2009)

Let p < 600 be prime. If p 6∈ {277, 349, 353, 389, 461, 523, 587} then
S2(K (p)) consists entirely of Gritsenko lifts.

This exactly matches Brumer’s “Yes” list for prime levels.

This is a lot of evidence for the Paramodular Conjecture because prime
levels p < 600 that don’t have abelian surfaces over Q also don’t have any
paramodular cusp forms beyond the Gritsenko lifts.
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Evidence for the Paramodular Conjecture Background evidence

Proof.

We can inject the weight two space into weight four spaces:

1) For g1, g2 ∈ Grit
(
Jcusp2,p

)
⊆ S2 (K (p)), we have the injection:

S2(K (p)) ↪→ {(H1,H2) ∈ S4(K (p))× S4(K (p)) : g2H1 = g1H2}
f 7→ (g1f , g2f )

2) The dimensions of S4(K (p)) are known by Ibukiyama; we still have to
span S4(K (p)) by computing products of Gritsenko lifts, traces of theta
series and by smearing with Hecke operators.

3) Millions of Fourier coefficients mod 109 later,

dimS2(K (p)) ≤ dim{(H1,H2) ∈ S4(K (p))× S4(K (p)) : g2H1 = g1H2}
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Evidence for the Paramodular Conjecture Foreground evidence

Examples of nonlifts are naturally more interesting
Method of Integral Closure

Theorem (PY 2009)

We have dimS2(K (277)) = 11 but dim Jcusp2,277 = 10. There is a Hecke
eigenform f277 ∈ S2(K (277)) that is not a Gritsenko lift.

A277 is the Jacobian of the hyperelliptic curve

y2 + y = x5 + 5x4 + 8x3 + 6x2 + 2x

Magma will compute lots of Euler factors for L(A277, s,H-W)

By contrast, we can only compute three Euler factors of
L(f277, s, spin).

But they agree! The 2, 3 and 5 Euler factors of L(f277, s, spin) agree
with those of L(A277, s,H-W).

Do you want to see f277? Later, when we have theta blocks.
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Evidence for the Paramodular Conjecture Foreground evidence

How can we prove a weight two nonlift cusp form exists?
Method of Integral Closure

Proof.

1) We have a candidate f = H1/g1 ∈ Mmero
2 (K (p)).

2) Find a weight four cusp form F ∈ S4(K (p)) and prove

F g2
1 = H2

1 in S8(K (p)).

Since F =

(
H1

g1

)2

is holomorphic, so is f =
H1

g1
.

The GROAN you hear is the computer chugging away in weight 8.
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Evidence for the Paramodular Conjecture Foreground evidence

More nonlifts?

• What about 349+, 353+, 389+, 461+, 523+, 587+, 587− ?

• The method of integral closure has only been used to prove existence of
a nonlift for f277 ∈ S2(K (277))+ where dim S8(K (277)) = 2529.

• Spanning more weight eight spaces was too expensive for us.

• We told our troubles to V. Gritsenko and he suggested 587− might give
a Borcherds Products. And that is what the rest of this talk is about.

But first, report on recent evidence from other sources.
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Evidence for the Paramodular Conjecture Foreground evidence

Central L-values

Paramodular Boecherer Conjecture (Ryan and Tornaria 2011)

Let p be prime and k be even. Let f ∈ Sk(K (p)) be a cuspidal Hecke
eigenform with Fourier expansion

f (Z ) =
∑
T>0

a(T ; f )e(tr(ZT )).

There exists a constant cf such that for every fund. disc. D < 0,

ρoL(f , 1
2 , χD)|D|k−1 = cf (

∑
[T ] disc. D

1
ε(T ) a(T ; f ) )2,

where ε(T ) = |AutΓ0(p)(T )| and ρo = 1 or 2 as (p,D) = 1 or p|D.

Proven for Gritsenko lifts.

Tested using Brumer’s curves and our Fourier coefficients.
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Evidence for the Paramodular Conjecture Foreground evidence

Equality of L-series
Complete Examples

Theorem Report (Johnson-Leung and Roberts 2012)

Let K = Q(
√
d) be a real quadratic field. Given a weight (k, k) Hilbert

modular form h, with a linearly independent conjugate, they figured out
how to lift h to a paramodular Hecke eigenform of level Norm(n)d2 with
corresponding eigenvalues.

Let E/K be an elliptic curve not isogenous to its conjugate.

Let A/Q be the abelian surface given by the Weil restriction of E .
Defining property: A(Q) corresponds to E (K )

Assume we know that E/K is modular w.r.t. a Hilbert form h.

Then A/Q is modular w.r.t. the Johnson-Leung Roberts lift of h.

Dembélé and Kumar have a preprint about this.

For a similar but different example: Berger, Dembélé, Pacetti, Sengun
for N = 2232 and K imaginary quadratic.
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Automorphic Forms Siegel Modular Forms

Definition of Siegel Modular Form

Siegel Upper Half Space: Hn = {Z ∈ Msym
n×n(C) : ImZ > 0}.

Symplectic group: σ =

(
A B
C D

)
∈ Spn(R) acts on Z ∈ Hn by

σ · Z = (AZ + B)(CZ + D)−1.

Γ ⊆ Spn(R) such that Γ ∩ Spn(Z) has finite index in Γ and Spn(Z)

Siegel Modular Form: Mk(Γ) = { holomorphic f : Hn → C that
transforms by det(CZ + D)k and are “bounded at the cusps” }
Cusp Form: Sk(Γ) = {f ∈ Mk(Γ) that “vanish at the cusps”}
Fourier Expansion: f (Z ) =

∑
T≥0 a(T ; f )e(tr(ZT ))

n = 2; Γ = K (N); T ∈
(

Z 1
2Z

1
2Z NZ

)
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Automorphic Forms Siegel Modular Forms

Examples of Siegel Modular Forms

Thetanullwerte: θ

[
a
b

]
(0,Z ) ∈ M1/2

(
Γ(n)(8)

)
for a, b ∈ 1

2Z
n

Riemann Theta Function:

θ

[
a
b

]
(z ,Z ) =

∑
m∈Zn

e
(

1
2 (m + a)′Z (m + a) + (m + a)′(z + b)

)

X10 =
∏10

a,b θ

[
a
b

]
(0,Z )2 ∈ S10(Sp2(Z)) (4a · b ≡ 0 mod 4)[

a
b

]
=

[
0 0
0 0

]
,

[
1/2 0

0 0

]
,

[
0 1/2
0 0

]
,

[
0 0

1/2 0

]
,

[
0 0
0 1/2

]
,[

1/2 1/2
0 0

]
,

[
0 0

1/2 1/2

]
,

[
1/2 0

0 1/2

]
,

[
0 1/2

1/2 0

]
,

[
1/2 1/2
1/2 1/2

]
.
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Automorphic Forms Jacobi Forms

Definition of Jacobi Forms: Automorphicity
Level one

Assume φ : H× C→ C is holomorphic.

φ̃ : H2 → C(
τ z
z ω

)
7→ φ(τ, z)e(mω)

Assume that φ̃ transforms by χ det(CZ + D)k for

P2,1(Z) =


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 ∩ Sp2(Z), ∗ ∈ Z,

P2,1(Z)/{±I} ∼= SL2(Z) n Heisenberg(Z)
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Automorphic Forms Jacobi Forms

Definition of Jacobi Forms: Support

Jacobi forms are tagged with additional adjectives to reflect the
support supp(φ) = {(n, r) ∈ Q2 : c(n, r ;φ) 6= 0} of the Fourier
expansion

φ(τ, z) =
∑
n,r∈Q

c(n, r ;φ)qnζr , q = e(τ), ζ = e(z).

φ ∈ Jcuspk,m : automorphicity and c(n, r ;φ) 6= 0 =⇒ 4mn − r2 > 0

φ ∈ Jk,m: automorphicity and c(n, r ;φ) 6= 0 =⇒ 4mn − r2 ≥ 0

φ ∈ Jweakk,m : automorphicity and c(n, r ;φ) 6= 0 =⇒ n ≥ 0

φ ∈ Jwh
k,m: automorphicity and c(n, r ;φ) 6= 0 =⇒ n >> −∞

(“wh” stands for weakly holomorphic)
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Automorphic Forms Jacobi Forms

Examples of Jacobi Forms

Dedekind Eta function η ∈ Jcusp1/2,0(ε)

η(τ) =
∑
n∈Z

(
12

n

)
qn

2/24 = q1/24
∏
n∈N

(1− qn)

Odd Jacobi Theta function ϑ ∈ Jcusp1/2,1/2(ε3vH)

ϑ(τ, z) =
∑
n∈Z

(
−4

n

)
qn

2/8ζn/2

= q1/8
(
ζ1/2 − ζ−1/2

)∏
n∈N

(1− qn)(1− qnζ)(1− qnζ−1)

ϑ` ∈ Jcusp
1/2,`2/2

(ε3v `H), ϑ`(τ, z) = ϑ(τ, `z)
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Automorphic Forms Theta Blocks

Theta Blocks
A theory due to Gritsenko, Skoruppa and Zagier.

Definition

A theta block is a function ηc(0)
∏
`

(
ϑ`
η

)c(`)

∈ Jmero
k,m for a sequence

c : N ∪ {0} → Z with finite support.

There is a famous Jacobi form of weight two and index 37:

f37 =
ϑ3

1ϑ
3
2ϑ

2
3ϑ4ϑ5

η6
= TB2[1, 1, 1, 2, 2, 2, 3, 3, 4, 5].

∏
`∈[1,1,1,2,2,2,3,3,4,5]

(
ζ`/2 − ζ−`/2

)
, the baby theta block.

Given a theta block, it is easy to calculate the weight, index,
character, divisor and valuation.
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Automorphic Forms Theta Blocks

Skoruppa’s Valuation

Definition

For φ ∈ Jwh
k,m, x ∈ R, define ord(φ; x) = min(n,r)∈supp(φ)(mx2 + rx + n)

ord : Jwh
k,m → Continuous piecewise quadratic functions of period one

Theorem (Gritsenko, Skoruppa, Zagier)

Let φ ∈ Jwh
k,m. Then φ ∈ Jk,m ⇐⇒ ord(φ; x) ≥ 0 and

φ ∈ Jcuspk,m ⇐⇒ ord(φ; x) > 0.

B2(x) = x2 − x − 1
6 and B̄(x) = B(x − bxc)

A lovely formula:

ord (TBk [d1, d2, . . . , d`]) ; x) =
k

12
+

1

2

∑
i

B̄2(dix)
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Automorphic Forms Theta Blocks

> > 
> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

x
K0.4 K0.2 0 0.2 0.4

y

0.1

0.2

0.3

Cuspidal weight 2, index 37 theta block:  1, 1, 1, 2, 2, 2, 3, 3, 4, 5

plot Skoord 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 2 , x =K0.5 ..0.5, y =K0.05 ..0.3, grid = 1000, caption
= typeset "Jacobi Eisenstein weight 2, index 25 theta block:  " , 1, 1, 1, 1, 2, 2, 2, 3, 3, 4 ;

  ## 6
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Automorphic Forms Theta Blocks

The shape of Theta Blocks to come

A
10ϑ

6η
theta block has weight 10( 1

2 )− 6( 1
2 ) = 2.

A
10ϑ

6η
theta block has leading q-power 10( 1

8 )− 6( 1
24 ) = 1.

A
10ϑ

6η
theta block has index m = 1

2 (d2
1 + d2

2 + · · ·+ d2
10).

Are there any other ways to get weight two?

A
22ϑ

18η
theta block has weight 22( 1

2 )− 18( 1
2 ) = 2.

A
22ϑ

18η
theta block has leading q-power 22( 1

8 )− 18( 1
24 ) = 2.

A
22ϑ

18η
theta block has index m = 1

2 (d2
1 + d2

2 + · · ·+ d2
22).
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Automorphic Forms Theta Blocks

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

x
K0.4 K0.2 0 0.2 0.4

y

0.1

0.2

0.3

Cuspidal weight 2, index 587 theta block:  
1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14

plot Skoord 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 2 , x =K0.5 ..0.5,
y =K0.05 ..0.3, grid = 1000, caption = typeset "Weak weight 2, index 587 theta block:  " , 1,
1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14 ;  
## 2  with a "5" changed to  a "6"  
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x
K0.4 K0.2 0 0.2 0.4

y

0.1
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0.3

Weak weight 2, index 587 theta block:  
1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14

plot Skoord 1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14, 2 , x =K0.5
..0.5, y = 0 ..0.3, grid = 1000, caption
= typeset "Cuspidal weight 2, index 1174 theta block:  " , 1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6,

6, 7, 8, 16, 9, 10, 22, 12, 13, 14 ;  ## 3
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Automorphic Forms Theta Blocks

Index Raising Operators V (`) : Jk ,m → Jk ,m`

Elliptic Hecke Algebra −→ Jacobi Hecke Algebra

∑
SL2(Z)

(
a b
c d

)
7→
∑

P2,1(Z)


a 0 b 0
0 ad − bc 0 0
c 0 d 0
0 0 0 1


∑
ad=`

b mod d

SL2(Z)

(
a b
0 d

)
7→

∑
ad=`

b mod d

P2,1(Z)


a 0 b 0
0 ` 0 0
0 0 d 0
0 0 0 1


T (`) 7→ V (`)
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Automorphic Forms Theta Blocks

Gritsenko Lift

Definition

For φ ∈ Jwh
k,m, define a series by

Grit(φ)

(
τ z
z ω

)
=
∑
`∈N

`2−k(φ|V (`))(τ, z)e(`mω).

Theorem (Gritsenko)

For φ ∈ Jcuspk,m the series Grit(φ) converges and defines a map

Grit : Jcuspk,m → Sk (K (m))ε , ε = (−1)k .

Example: Grit
(
η18ϑ2

)
= X10 ∈ S10(K (1))
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Automorphic Forms Theta Blocks

There are 10 dimensions of Gritsenko lifts in S2 (K (277))

We have dimS2(K (277)) = 11 whereas the dimension of Gritsenko lifts in
S2(K (277)) is dim Jcusp2,277 = 10.

Let Gi = Grit (TB2(Σi )) for 1 ≤ i ≤ 10 be the lifts of the 10 theta blocks
given by:

Σi ∈ { [2, 4, 4, 4, 5, 6, 8, 9, 10, 14], [2, 3, 4, 5, 5, 7, 7, 9, 10, 14],
[2, 3, 4, 4, 5, 7, 8, 9, 11, 13], [2, 3, 3, 5, 6, 6, 8, 9, 11, 13],
[2, 3, 3, 5, 5, 8, 8, 8, 11, 13], [2, 3, 3, 5, 5, 7, 8, 10, 10, 13],
[2, 3, 3, 4, 5, 6, 7, 9, 10, 15], [2, 2, 4, 5, 6, 7, 7, 9, 11, 13],
[2, 2, 4, 4, 6, 7, 8, 10, 11, 12], [ 2, 2, 3, 5, 6, 7, 9, 9, 11, 12] }.
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Automorphic Forms Theta Blocks

The nonlift paramodular eigenform f277 ∈ S2 (K (277))

f277 =
Q

L

Q = −14G 2
1 − 20G8G2 + 11G9G2 + 6G 2

2 − 30G7G10 + 15G9G10 + 15G10G1

− 30G10G2 − 30G10G3 + 5G4G5 + 6G4G6 + 17G4G7 − 3G4G8 − 5G4G9

− 5G5G6 + 20G5G7 − 5G5G8 − 10G5G9 − 3G 2
6 + 13G6G7 + 3G6G8

− 10G6G9 − 22G 2
7 + G7G8 + 15G7G9 + 6G 2

8 − 4G8G9 − 2G 2
9 + 20G1G2

− 28G3G2 + 23G4G2 + 7G6G2 − 31G7G2 + 15G5G2 + 45G1G3 − 10G1G5

− 2G1G4 − 13G1G6 − 7G1G8 + 39G1G7 − 16G1G9 − 34G 2
3 + 8G3G4

+ 20G3G5 + 22G3G6 + 10G3G8 + 21G3G9 − 56G3G7 − 3G 2
4 ,

L =− G4 + G6 + 2G7 + G8 − G9 + 2G3 − 3G2 − G1.

Cris Poor and David Yuen Modularity in Degree Two Shanghai 30 / 47



Automorphic Forms Theta Blocks

Euler factors for f277 ∈ S2 (K (277))

L(f , s, spin) =
(
1 + 2x + 4x2 + 4x3 + 4x4

)(
1 + x + x2 + 3x3 + 9x4

)(
1 + x − 2x2 + 5x3 + 25x4

)
. . .

These match the 2, 3 and 5 Euler factors for L(A277, s,H-W)

A277 = Jacobian of y2 + y = x5 + 5x4 + 8x3 + 6x2 + 2x

A spin L-function not of GL(2) type.
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Construction of Paramodular Forms via Borcherds Products Borcherds Products

Joint work with V. Gritsenko

S2(K (587))− = CB is spanned by a Borcherds product B.

(A minus form in weight two cannot be a lift.)

Why did Gritsenko suspect that the first minus form might be a Borcherds
product?

11 = min{p : S2(Γ0(p)) 6= {0}}, S2(Γ0(11)) = C η(τ)2η(11τ)2

37 = min{p : Jcusp2,p 6= {0}}, Jcusp2,37 = C η−6ϑ3
1ϑ

3
2ϑ

2
3ϑ4ϑ5

587 = min{p : S2(K (p))− 6= {0}}, S2(K (587))− = C Borch(ψ)

ψ ∈ Jwh
0,587(Z)
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Construction of Paramodular Forms via Borcherds Products Borcherds Products

Let’s come to grips with Borcherds products.
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Construction of Paramodular Forms via Borcherds Products Borcherds Products

Theorem (Borcherds, Gritsenko, Nikulin)

Let N,No ∈ N. Let Ψ ∈ Jwh
0,N be a weakly holomorphic Jacobi form with

Fourier expansion

Ψ(τ, z) =
∑

n,r∈Z: n≥−No

c (n, r) qnζr

and c(n, r) ∈ Z for 4Nn − r2 ≤ 0. Then we have c(n, r) ∈ Z for all
n, r ∈ Z. We set

24A =
∑
`∈Z

c(0, `); 2B =
∑
`∈N

`c(0, `); 4C =
∑
`∈Z

`2c(0, `);

D0 =
∑

n∈Z: n<0

σ0(−n)c(n, 0); k =
1

2
c(0, 0); χ = (ε24A × v2B

H )χk+D0
F .

There is a function Borch(Ψ) ∈ Mmero
k (K (N)+, χ) whose divisor in

Cris Poor and David Yuen Modularity in Degree Two Shanghai 34 / 47



Construction of Paramodular Forms via Borcherds Products Borcherds Products

in K (N)+\H2 consists of Humbert surfaces Hum(To) for

To =
(

no ro/2
ro/2 Nmo

)
with gcd(no , ro ,mo) = 1 and mo ≥ 0. The multiplicity

of Borch(Ψ) on Hum(To) is
∑

n∈N c(n2nomo , nro). In particular, if
c(n, r) ≥ 0 when 4Nn − r2 ≤ 0 then Borch(Ψ) ∈ Mk (K (N)+, χ) is
holomorphic. In particular,

Borch(Ψ)(µN〈Z 〉) = (−1)k+D0 Borch(Ψ)(Z ), for Z ∈ H2.

For sufficiently large λ, for Z = ( τ z
z ω ) ∈ H2 and q = e(τ), ζ = e(z),

ξ = e(ω), the following product converges on {Z ∈ H2 : ImZ > λI2}:

Borch(Ψ)(Z )=qAζBξC
∏

n,r ,m∈Z:m≥0, if m = 0 then n ≥ 0
and if m = n = 0 then r < 0.

(
1− qnζrξNm

)c(nm,r)
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and is on {Ω ∈ H2 : Im Ω > λI2} a rearrangement of

Borch(Ψ) =

ηc(0,0)
∏
`∈N

(
ϑ̃`
η

)c(0,`)
 exp (−Grit(Ψ)) .
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Borcherds Product Summary

Theorem

So, somehow, if you have a weakly holomorphic weight zero, index N
Jacobi form with integral coefficients

Ψ(τ, z) =
∑

n,r∈Z: n≥−No

c (n, r) qnζr

and the “singular coeffients” c(n, r) with 4Nn − r2 < 0 are for the most
part positive, then

Borch(Ψ)(Z )=qAζBξC
∏
n,m,r

(
1− qnζrξNm

)c(nm,r)

converges in a neighborhood of infinity and analytically continues to an
element of Mk ′ (K (N)), for some new weight k ′.
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Borcherds Product Example

φ10 = η18ϑ2
1 ∈ Jcusp10,1

ψ = −φ10|V (2)

φ10
=

∑
n,r∈Z: n≥1

c (n, r ;ψ) qnζr ∈ Jweak0,1

= 20 + 2ζ + 2ζ−1 + . . .

X10 = Borch(ψ)(Z )=qζξ
∏
n,m,r

(1− qnζrξm)c(nm,r ;ψ)

Div (Borch(ψ)) = 2 Hum
(

0 1/2
1/2 0

)
= 2 Sp2(Z)(H1 ×H1)

The reducible locus: Sp2(Z)(H1 ×H1) ⊆ Sp2(Z)\H2
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A nonlift Borcherds Product in S2 (K (587))−

Want: antisymmetric B-product f ∈ S2(K (p))−, here p = 587.

Fourier Jacobi expansion: f = φpξ
p + φ2pξ

2p + . . .

φp is a theta block because f is a B-prod.

φp ∼ q2 because f is antisymmetric

The only element of Jcusp2,587 that vanishes to order two is:

TB2 2 =

TB2[1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14]
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

x
K0.4 K0.2 0 0.2 0.4

y

0.1

0.2

0.3

Cuspidal weight 2, index 587 theta block:  
1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14

plot Skoord 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 2 , x =K0.5 ..0.5,
y =K0.05 ..0.3, grid = 1000, caption = typeset "Weak weight 2, index 587 theta block:  " , 1,
1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14 ;  
## 2  with a "5" changed to  a "6"  
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The Ansatz
Maybe this will work.

Ansatz

Define a Theta Buddy Θ ∈ Jcusp2,2·587 by

φ2p = φp|V (2)−Θ

By antisymmetry and the action of V (2)

coef(q2,Θ) = coef(q4, φp) =
∏
`∈ 3

(
ζ`/2 − ζ−`/2

)
The leading coefficient of the Theta Buddy is a Baby Theta Block:

Θ = TB2 3 =

TB2[1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14]
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> > 

> > 

x
K0.4 K0.2 0 0.2 0.4

y

0.1

0.2

0.3

Cuspidal weight 2, index 1174 theta block:  
1, 10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14

plot Skoord 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 2 , Skoord 1,
10, 2, 2, 18, 3, 3, 4, 4, 15, 5, 6, 6, 7, 8, 16, 9, 10, 22, 12, 13, 14, 2 , x =K0.5 ..0.5, y = 0
..0.3, grid = 1000, caption
= typeset "Cuspidal weight 2, index 587 and 1174 theta blocks:  " ;  ## 4
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x
K0.4 K0.2 0 0.2 0.4

y

0.1

0.2

0.3

Cuspidal weight 2, index 587 and 1174 theta blocks:  

plot Skoord 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 2 , x =K0.5 ..0.5, y = 0 ..0.3, grid = 1000, caption
= typeset "Cuspidal weight 2, index 37 theta block:  " , 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 ;  ## 5
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Define

ψ =
TB2 2 |V (2)− TB2 3

TB2 2
∈ Jwh

0,587

= 4 +
1

q
+ ζ−14 + · · ·+ q134ζ561 + · · ·

Compute the singular part of ψ to order q146 = qbp/4c and see that
all singular Fourier coefficients c(n, r ;ψ) ≥ 0 .

Therefore, Borch(ψ) ∈ S2 (K (587))− exists and hence spans a one
dimensional space.
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Compute the 2 and 3-Euler factors

L(f , s, spin) =
(
1 + 3x + 9x2 + 6x3 + 4x4

)(
1 + 4x + 9x2 + 12x3 + 9x4

)
. . .

These match the 2 and 3 Euler factors for L(A−587, s,H-W)

A−587 = Jacobian of y2 + (x3 + x + 1)y = −x3 +−x2
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Current Work

We are using Borcherds products to construct more paramodular nonlifts.
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Thank you!

Cris Poor and David Yuen Modularity in Degree Two Shanghai 47 / 47


	Introduction
	Evidence for the Paramodular Conjecture
	Background evidence
	Foreground evidence

	Automorphic Forms
	Siegel Modular Forms
	Jacobi Forms
	Theta Blocks

	Construction of Paramodular Forms via Borcherds Products
	Borcherds Products
	587


