p=101: \chi = \chi_{101}^50 f(\chi) = 101 ord(\chi) = 2 N(B_{2,\chi}/4) = 19 ----- \chi = \chi_{101}^20 f(\chi) = 101 ord(\chi) = 5 N(B_{2,\chi}/4) = 271855 = 5 * 54371 ----- [\chi = \chi_{101}^10 f(\chi) = 101 ord(\chi) = 10 N(B_{2,\chi}/4) = 599491 = p(6) ----- \chi = \chi_{101}^4 f(\chi) = 101 ord(\chi) = 25 N(B_{2,\chi}/4) = 15589853870585597510415291505 = 5 * 52951 * 58884077243434864347851 ----- \chi = \chi_{101}^2 f(\chi) = 101 ord(\chi) = 50 N(B_{2,\chi}/4) = 15715379750167267284730148201 = 1201 * 1493651 * 12355051 * 709068505801 ----- ----- p=103: \chi = \chi_{103}^34 f(\chi) = 103 ord(\chi) = 3 N(B_{2,\chi}/4) = 637 = 7^2 * 13 ----- \chi = \chi_{103}^6 f(\chi) = 103 ord(\chi) = 17 N(B_{2,\chi}/4) = 35822619618320758456157 = 17^2 * 123953701101455911613 ----- \chi = \chi_{103}^2 f(\chi) = 103 ord(\chi) = 51 N(B_{2,\chi}/4) = 3720569491083294083561348675078978270119196863 = 613 * 100458793666879 * 60417254667158883466061055469 ----- ----- p=107: \chi = \chi_{107}^2 f(\chi) = 107 ord(\chi) = 53 107N(B_{2,\chi}/4) = 124368774979658821687008991761829524338976491262179565361941056699780117649583 = 53 * 304009 * 1598587 * 7762787405087851 * 1827219997313025527 * 340411510885100431606787699221 ----- ----- p=109: \chi = \chi_{109}^54 f(\chi) = 109 ord(\chi) = 2 N(B_{2,\chi}/4) = 27 = 3^3 ----- \chi = \chi_{109}^36 f(\chi) = 109 ord(\chi) = 3 N(B_{2,\chi}/4) = 1236 = 2^2 * 3 * 103 ----- \chi = \chi_{109}^18 f(\chi) = 109 ord(\chi) = 6 N(B_{2,\chi}/4) = 444 = 2^2 * 3 * 37 ----- \chi = \chi_{109}^12 f(\chi) = 109 ord(\chi) = 9 N(B_{2,\chi}/4) = 247614249 = 3 * 37 * 2230759 ----- \chi = \chi_{109}^6 f(\chi) = 109 ord(\chi) = 18 N(B_{2,\chi}/4) = 1087884921 = 3 * 127^2 * 22483 ----- \chi = \chi_{109}^4 f(\chi) = 109 ord(\chi) = 27 N(B_{2,\chi}/4) = 178926863758382320600346787 = 3 * 3187 * 129763 * 144218626120352809 ----- \chi = \chi_{109}^2 f(\chi) = 109 ord(\chi) = 54 109N(B_{2,\chi}/4) = 21675724464633656434175782353 = 3 * 7225241488211218811391927451 ----- ----- p=113: \chi = \chi_{113}^56 f(\chi) = 113 ord(\chi) = 2 N(B_{2,\chi}/4) = 36 = 2^2 * 3^2 ----- \chi = \chi_{113}^28 f(\chi) = 113 ord(\chi) = 4 N(B_{2,\chi}/4) = 1640 = 2^3 * 5 * 41 ----- \chi = \chi_{113}^16 f(\chi) = 113 ord(\chi) = 7 N(B_{2,\chi}/4) = 484632008 = 2^3 * 7 * 1597 * 5419 ----- \chi = \chi_{113}^14 f(\chi) = 113 ord(\chi) = 8 N(B_{2,\chi}/4) = 380872 = 2^3 * 47609 ----- \chi = \chi_{113}^8 f(\chi) = 113 ord(\chi) = 14 N(B_{2,\chi}/4) = 669482248 = 2^3 * 83685281 ----- \chi = \chi_{113}^4 f(\chi) = 113 ord(\chi) = 28 N(B_{2,\chi}/4) = 355241893721965832 = 2^3 * 33181 * 1338273009109 ----- \chi = \chi_{113}^2 f(\chi) = 113 ord(\chi) = 56 113N(B_{2,\chi}/4) = 100724182678971468376844325279091727752 = 2^3 * 13^2 * 2689 * 7393 * 3747533743340403014797054313 ----- ----- p=127: \chi = \chi_{127}^42 f(\chi) = 127 ord(\chi) = 3 N(B_{2,\chi}/4) = 2172 = 2^2 * 3 * 181 ----- \chi = \chi_{127}^18 f(\chi) = 127 ord(\chi) = 7 N(B_{2,\chi}/4) = 1421298067 = 7^2 * 113 * 197 * 1303 ----- \chi = \chi_{127}^14 f(\chi) = 127 ord(\chi) = 9 N(B_{2,\chi}/4) = 11142527808 = 2^6 * 3 * 19^3 * 8461 ----- \chi = \chi_{127}^6 f(\chi) = 127 ord(\chi) = 21 N(B_{2,\chi}/4) = 3218253985706523163 = 310631203 * 10360369321 ----- \chi = \chi_{127}^2 f(\chi) = 127 ord(\chi) = 63 127N(B_{2,\chi}/4) = 3337444920675475870267780511153885467486757746190218167523 = 2647 * 36037 * 62497 * 404502990175243 * 1383982596554597891267948732467 ----- ----- p=131: \chi = \chi_{131}^26 f(\chi) = 131 ord(\chi) = 5 N(B_{2,\chi}/4) = 1292275 = 5^2 * 51691 ----- \chi = \chi_{131}^10 f(\chi) = 131 ord(\chi) = 13 N(B_{2,\chi}/4) = 5548598204321224637 = 13 * 79 * 131 * 1095433 * 37649197 ----- \chi = \chi_{131}^2 f(\chi) = 131 ord(\chi) = 65 131N(B_{2,\chi}/4) = 1371668139877748639013263427033345245059266625360693841990311619406495850197391 = 33460212334628809861 * 40994005840727286877196375702867596392577114563736687049731 ----- ----- p=137: \chi = \chi_{137}^68 f(\chi) = 137 ord(\chi) = 2 N(B_{2,\chi}/4) = 48 = 2^4 * 3 ----- \chi = \chi_{137}^34 f(\chi) = 137 ord(\chi) = 4 N(B_{2,\chi}/4) = 970 = 2 * 5 * 97 ----- \chi = \chi_{137}^8 f(\chi) = 137 ord(\chi) = 17 N(B_{2,\chi}/4) = 34203007057913707867519429 = 17 * 199411 * 10089421303950046967 ----- \chi = \chi_{137}^4 f(\chi) = 137 ord(\chi) = 34 N(B_{2,\chi}/4) = 46501460134790002384261379 = 103 * 239 * 2294587411 * 823240746217 ----- \chi = \chi_{137}^2 f(\chi) = 137 ord(\chi) = 68 137N(B_{2,\chi}/4) = 684869884184182500646204580494653958892748411051622453 = p(54) ----- ----- p=139: \chi = \chi_{139}^46 f(\chi) = 139 ord(\chi) = 3 N(B_{2,\chi}/4) = 1075 = 5^2 * 43 ----- \chi = \chi_{139}^6 f(\chi) = 139 ord(\chi) = 23 N(B_{2,\chi}/4) = 245751511577251045061954107727402761 = 23 * 277 * 2737007376425083 * 14093297667129977 ----- \chi = \chi_{139}^2 f(\chi) = 139 ord(\chi) = 69 139N(B_{2,\chi}/4) = 34718372591971018910261320788224574006078418606540391471996365770510499231 = 277 * 3727 * 6763 * 1492747 * 102233023 * 102218257 * 830784013 * 383695581891911605563028277699143 ----- ----- p=149: \chi = \chi_{149}^74 f(\chi) = 149 ord(\chi) = 2 N(B_{2,\chi}/4) = 35 = 5 * 7 ----- \chi = \chi_{149}^4 f(\chi) = 149 ord(\chi) = 37 N(B_{2,\chi}/4) = 465138345251632197998292135436980351968526971147458384034579 = 37 * 149 * 18669017 * 699304659337 * 125644735166799899 * 51435383554813467073 ----- \chi = \chi_{149}^2 f(\chi) = 149 ord(\chi) = 74 149N(B_{2,\chi}/4) = 149666948847741125338495694718200083589828575648633406074632527 = 647057 * 670498979 * 344973110329098669707404134678187281803741353109 ----- ----- p=151: \chi = \chi_{151}^50 f(\chi) = 151 ord(\chi) = 3 N(B_{2,\chi}/4) = 1981 = 7 * 283 ----- \chi = \chi_{151}^30 f(\chi) = 151 ord(\chi) = 5 N(B_{2,\chi}/4) = 12836080 = 2^4 * 5 * 281 * 571 ----- \chi = \chi_{151}^10 f(\chi) = 151 ord(\chi) = 15 N(B_{2,\chi}/4) = 6957279435991 = 4831 * 10651 * 135211 ----- \chi = \chi_{151}^6 f(\chi) = 151 ord(\chi) = 25 N(B_{2,\chi}/4) = 643320731112047633029841929165255 = 5 * 1201 * 2351 * 189251 * 1323001 * 181996715584751 ----- \chi = \chi_{151}^2 f(\chi) = 151 ord(\chi) = 75 151N(B_{2,\chi}/4) = 4391243171486480817403041142000124841685793493098757712667204665381051 = 54151 * 2044201 * 169693903672365691219651 * 233771287954777203021398413257530551 ----- ----- p=157: \chi = \chi_{157}^78 f(\chi) = 157 ord(\chi) = 2 N(B_{2,\chi}/4) = 43 = p(1) ----- \chi = \chi_{157}^52 f(\chi) = 157 ord(\chi) = 3 N(B_{2,\chi}/4) = 3868 = 2^2 * 967 ----- \chi = \chi_{157}^26 f(\chi) = 157 ord(\chi) = 6 N(B_{2,\chi}/4) = 1372 = 2^2 * 7^3 ----- \chi = \chi_{157}^12 f(\chi) = 157 ord(\chi) = 13 N(B_{2,\chi}/4) = 154246189155578466479 = 13 * 53 * 157^2 * 521 * 17432440559 ----- \chi = \chi_{157}^6 f(\chi) = 157 ord(\chi) = 26 N(B_{2,\chi}/4) = 292883144997852989009 = 1223 * 1249 * 191736803996167 ----- \chi = \chi_{157}^4 f(\chi) = 157 ord(\chi) = 39 N(B_{2,\chi}/4) = 32598095374537908182168116101095757718963 = p(41) ----- \chi = \chi_{157}^2 f(\chi) = 157 ord(\chi) = 78 157N(B_{2,\chi}/4) = 14470535133253998351455207512133091060420409 = 79 * 859 * 937 * 9049 * 83773 * 37464961 * 8012993762508566521 ----- ----- p=163: \chi = \chi_{163}^54 f(\chi) = 163 ord(\chi) = 3 N(B_{2,\chi}/4) = 2028 = 2^2 * 3 * 13^2 ----- \chi = \chi_{163}^18 f(\chi) = 163 ord(\chi) = 9 N(B_{2,\chi}/4) = 18304907043 = 3 * 109 * 55978309 ----- \chi = \chi_{163}^6 f(\chi) = 163 ord(\chi) = 27 N(B_{2,\chi}/4) = 9723467885310204899678827465503 = 3 * 1297 * 154979299 * 805261069 * 20023941043 ----- \chi = \chi_{163}^2 f(\chi) = 163 ord(\chi) = 81 163N(B_{2,\chi}/4) = 155776286804732116073343724630863038291383903842812838640285521990277495710924269385276467952537 = 3 * 587737 * 10572769 * 865198507525724503 * 9658119078998135616537917242897110280853472233204654240631214381 ----- ----- p=167: \chi = \chi_{167}^2 f(\chi) = 167 ord(\chi) = 83 167N(B_{2,\chi}/4) = 3156897920309974901664653727654051992016767691362179258495731157686742940526388208011503762926260509831089508787608242022129338988432073598290253 = 83 * 1993 * 4649 * 9629 * 7851967 * 20553623 * 34365620804182083686739443967310762229 * 76867608462662705553326863791363962854560789604302167077296998782373986629120823 ----- ----- p=173: \chi = \chi_{173}^86 f(\chi) = 173 ord(\chi) = 2 N(B_{2,\chi}/4) = 39 = 3 * 13 ----- \chi = \chi_{173}^4 f(\chi) = 173 ord(\chi) = 43 N(B_{2,\chi}/4) = 54208505442142756280503551608811708235711700925389380447898431722099163639 = 43 * 46960497973 * 260745374412072164116709 * 102955528365392695502756253413534808989 ----- \chi = \chi_{173}^2 f(\chi) = 173 ord(\chi) = 86 173N(B_{2,\chi}/4) = 22778703947564807362722836741433748900179728334066265848914458762484877804299 = 1549 * 333337 * 44115790932041788914220271675333873910046243850387237442611098539023 ----- ----- p=179: \chi = \chi_{179}^2 f(\chi) = 179 ord(\chi) = 89 179N(B_{2,\chi}/4) = 859034234963782226290826693227468643559144270503431871466450393502473140195047631016784593852262150812302277261512041740320519813063195098694981863815580485713 = 89 * 13333326269136675312015237067 * 7615516546671265168088475049661802660645177719 * 95056669272849915673694107801093974078457746494949835378561734523706869666003503629 ----- ----- p=181: \chi = \chi_{181}^90 f(\chi) = 181 ord(\chi) = 2 N(B_{2,\chi}/4) = 57 = 3 * 19 ----- \chi = \chi_{181}^60 f(\chi) = 181 ord(\chi) = 3 N(B_{2,\chi}/4) = 2883 = 3 * 31^2 ----- \chi = \chi_{181}^36 f(\chi) = 181 ord(\chi) = 5 N(B_{2,\chi}/4) = 10148875 = 5^3 * 11^3 * 61 ----- \chi = \chi_{181}^30 f(\chi) = 181 ord(\chi) = 6 N(B_{2,\chi}/4) = 4287 = 3 * 1429 ----- \chi = \chi_{181}^20 f(\chi) = 181 ord(\chi) = 9 N(B_{2,\chi}/4) = 45954517377 = 3 * 199 * 1567 * 49123 ----- \chi = \chi_{181}^18 f(\chi) = 181 ord(\chi) = 10 N(B_{2,\chi}/4) = 13734911 = p(8) ----- \chi = \chi_{181}^12 f(\chi) = 181 ord(\chi) = 15 N(B_{2,\chi}/4) = 340807904232031 = 22171 * 36451 * 421711 ----- \chi = \chi_{181}^10 f(\chi) = 181 ord(\chi) = 18 N(B_{2,\chi}/4) = 51248768313 = 3 * 16417 * 1040563 ----- \chi = \chi_{181}^6 f(\chi) = 181 ord(\chi) = 30 N(B_{2,\chi}/4) = 150341058743131 = 8161 * 19141 * 962431 ----- \chi = \chi_{181}^4 f(\chi) = 181 ord(\chi) = 45 N(B_{2,\chi}/4) = 8792012537922530292885832976503408066417561 = 1509031 * 1400655871 * 4159668210391392272714986561 ----- \chi = \chi_{181}^2 f(\chi) = 181 ord(\chi) = 90 181N(B_{2,\chi}/4) = 2228681429491921514261698307762009024913780271 = p(46) ----- ----- p=191: \chi = \chi_{191}^38 f(\chi) = 191 ord(\chi) = 5 N(B_{2,\chi}/4) = 15759755 = 5 * 11 * 286541 ----- \chi = \chi_{191}^10 f(\chi) = 191 ord(\chi) = 19 N(B_{2,\chi}/4) = 643325731130582022653049683467411 = 19 * 2328413 * 518343181 * 28054330973848073 ----- \chi = \chi_{191}^2 f(\chi) = 191 ord(\chi) = 95 191N(B_{2,\chi}/4) = 42375194457138958193929119818606328228186757423028583045480526965317701417161499007343166690904473998154882621227736260086869574775511 = 566011 * 1745911 * 244208087561 * 15494898280432001 * 308891995203638990952770261 * 36686755505028988542421576202859801456307886523071725650585470449871 ----- ----- p=193: \chi = \chi_{193}^96 f(\chi) = 193 ord(\chi) = 2 N(B_{2,\chi}/4) = 98 = 2 * 7^2 ----- \chi = \chi_{193}^64 f(\chi) = 193 ord(\chi) = 3 N(B_{2,\chi}/4) = 4291 = 7 * 613 ----- \chi = \chi_{193}^48 f(\chi) = 193 ord(\chi) = 4 N(B_{2,\chi}/4) = 3866 = 2 * 1933 ----- \chi = \chi_{193}^32 f(\chi) = 193 ord(\chi) = 6 N(B_{2,\chi}/4) = 4447 = p(4) ----- \chi = \chi_{193}^24 f(\chi) = 193 ord(\chi) = 8 N(B_{2,\chi}/4) = 13439794 = 2 * 6719897 ----- \chi = \chi_{193}^16 f(\chi) = 193 ord(\chi) = 12 N(B_{2,\chi}/4) = 49394761 = 13 * 3799597 ----- \chi = \chi_{193}^12 f(\chi) = 193 ord(\chi) = 16 N(B_{2,\chi}/4) = 362486078306498 = 2 * 181243039153249 ----- \chi = \chi_{193}^8 f(\chi) = 193 ord(\chi) = 24 N(B_{2,\chi}/4) = 203557692352177 = 2473 * 2857 * 28810657 ----- \chi = \chi_{193}^6 f(\chi) = 193 ord(\chi) = 32 N(B_{2,\chi}/4) = 204371702462197010310550491458 = 2 * 10177 * 19454177 * 400501537 * 1288706273 ----- \chi = \chi_{193}^4 f(\chi) = 193 ord(\chi) = 48 N(B_{2,\chi}/4) = 218082597947008297404008014273 = 769 * 440848232689 * 643288175020753 ----- \chi = \chi_{193}^2 f(\chi) = 193 ord(\chi) = 96 193N(B_{2,\chi}/4) = 8110860273308800474269339620615899070031577925953051355474401 = 5857 * 86017 * 207585555882063361 * 77555084036558889125160328617209089 ----- ----- p=197: \chi = \chi_{197}^98 f(\chi) = 197 ord(\chi) = 2 N(B_{2,\chi}/4) = 49 = 7^2 ----- \chi = \chi_{197}^28 f(\chi) = 197 ord(\chi) = 7 N(B_{2,\chi}/4) = 73374871304 = 2^3 * 7 * 29 * 45181571 ----- \chi = \chi_{197}^14 f(\chi) = 197 ord(\chi) = 14 N(B_{2,\chi}/4) = 172091586856 = 2^3 * 7 * 281 * 547 * 19993 ----- \chi = \chi_{197}^4 f(\chi) = 197 ord(\chi) = 49 N(B_{2,\chi}/4) = 312796891462387765626121805871129499037824418860689959552628643100958523861957 = 7 * 5010349 * 227396171658710987137500680057 * 39220512245971245786056490012827270177207 ----- \chi = \chi_{197}^2 f(\chi) = 197 ord(\chi) = 98 197N(B_{2,\chi}/4) = 61605197580561279395771769540046445961697892036952692195677845806899926289686209 = 7 * 1162651530806403467975573 * 7569544509526983769520304669072100675964615262053085019 ----- -----